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Abstract

In emerging clinical applications such as ultrasound-based
burn assessment, the lack of domain-specific data presents
a significant challenge for developing robust AI systems.
Vision-language models (VLMs) have shown strong perfor-
mance in general computer vision tasks, yet their application
to medical imaging remains limited, particularly due to insuf-
ficient reasoning capabilities and the scarcity of high-quality
training data. We introduce AURA (Automated Unified Rea-
soning for Burn Assessment), a multi-modal approach that
integrates pre-trained VLMs with symbolic first-order logic
(FOL) reasoning to improve diagnostic accuracy and inter-
pretability in this data-limited setting. For this study, we col-
lected real-patient data over a one-year period at a U.S. burn
center, performing all experiments in a real clinical setting to
ensure practical relevance. The dataset includes both conven-
tional B-Mode ultrasound and Tissue Doppler Imaging (TDI),
with TDI introduced here for the first time in burn assess-
ment, underscoring the emerging nature of this work. Beyond
burn severity classification, we assess the system’s ability to
produce expert-level surgical insight directly from imaging
data. On the retrospective dataset, it achieves up to 93% ac-
curacy in surgical classification and 87% in fine-grained burn
depth prediction, comparable to expert-informed predictions
and substantially exceeding the 70% accuracy of traditional
visual inspection by human experts. These results, obtained
from a novel multi-modal dataset collected in a real clinical
burn center setting, highlight the potential of this approach to
improve decision-making in burn care. To further support fu-
ture deployment, we demonstrate a prototype integration with
an Electronic Medical Record (EMR) system that aligns with
clinical workflows and supports scalable, real-world imple-
mentation.

Introduction
Burn injuries are a major global health concern, often requir-
ing rapid and accurate assessment to guide surgical interven-
tion and treatment planning. The severity and depth of burns
directly influence clinical decisions, including the need for
surgery, the extent of debridement, and long-term recovery
strategies. Current diagnostic practice in many burn centers
relies primarily on expert visual inspection, which is sub-
jective and can lead to inconsistent outcomes, particularly
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Figure 1: Overview of the proposed framework for burn
depth assessment. The system takes multi-modal ultra-
sound inputs, including B-mode and Tissue Doppler Imag-
ing (TDI), from the burn site. Structured diagnostic hypothe-
ses are automatically generated by a large language model
(LLM). These hypotheses guide the vision–language model
(VLM) through chain-of-thought (CoT) reasoning to pro-
duce interpretable outputs for surgical decision-making and
fine-grained burn depth prediction.

in borderline cases. Objective assessment methods, such as
imaging-based analysis, have the potential to improve diag-
nostic consistency and support decision-making. Ultrasound
imaging offers a portable, non-invasive, and relatively low-
cost modality for evaluating burn injuries. Conventional B-
Mode ultrasound has been investigated in burn care, but
its diagnostic use remains limited. Tissue Doppler Imaging
(TDI) (Ho and Solomon 2006), commonly applied in car-
diology and musculoskeletal assessment, has not previously
been explored for burn severity evaluation. Introducing TDI
into burn assessment expands the range of measurable tis-
sue properties, potentially enabling more nuanced severity
classification.

Despite these opportunities, the application of artificial in-
telligence (AI) to burn imaging faces two key challenges.
First, the availability of domain-specific datasets is limited,
particularly for emerging modalities such as TDI, which re-
stricts the use of fully supervised approaches. Second, ex-
isting vision-language models (VLMs) (Achiam et al. 2023;
Touvron et al. 2023; Liu et al. 2023, 2024; Radford et al.
2019, 2021; Li et al. 2023; Zhang et al. 2024b; Li et al.



2024; Guo et al. 2024; Zhang et al. 2024a; Shakeri et al.
2024), while successful in general computer vision and nat-
ural language tasks, often lack the structured reasoning ca-
pability required to integrate complex visual and clinical in-
formation into interpretable diagnostic outputs (Wei et al.
2022; Wang et al. 2023; Chen et al. 2024; Gu et al. 2024).
These limitations are further amplified in emerging do-
mains like ultrasound-based burn care (Tuncer et al. 2024),
where imaging protocols are evolving and modality-specific
datasets are rare.

To address these challenges, we propose AURA
(Atomated Unified Reasoning for Burn Assessment), a
multi-modal approach that adapts pre-trained, general-
purpose VLMs to medical imaging tasks by incorporat-
ing symbolic first-order logic (FOL) reasoning (see Figure
1). The method processes detailed textual descriptions of
imaging conditions, modalities, and patient context along-
side visual data to generate diagnostic hypotheses and corre-
sponding FOL premises that encode clinical rationale. These
premises are validated using an SMT solver (de Moura and
Bjørner 2008) to detect and resolve inconsistencies, en-
abling iterative refinement until a consistent, clinically rel-
evant conclusion is reached.

For this study, we collected a one-year dataset of real-
patient ultrasound scans from a U.S. burn center, performing
all experiments in a clinical burn care setting. The dataset
includes both conventional B-Mode and TDI modalities,
marking the first introduction of TDI in burn severity assess-
ment. We evaluate the proposed approach on two clinically
relevant tasks: (i) binary classification to determine surgical
intervention requirements, and (ii) fine-grained, three-class
burn severity classification. On the retrospective dataset, the
method achieves up to 93% accuracy in surgical decision-
making and 87% in burn depth prediction, comparable to
expert-informed predictions and substantially exceeding the
∼70% accuracy of traditional visual inspection by human
experts. To demonstrate deployment readiness, we also in-
tegrate the framework into a prototype Electronic Medical
Record (EMR) system, showing its compatibility with real-
world clinical workflows.

Methodology
We present AURA (Automated Unified Reasoning for Burn
Assessment), a multi-modal diagnostic reasoning framework
that integrates pre-trained Vision-Language Models (VLMs)
with symbolic first-order logic (FOL). AURA performs clin-
ical reasoning over ultrasound-based burn imaging, generat-
ing interpretable hypotheses and refining diagnostic conclu-
sions through logical consistency checks. The system pro-
cesses textual descriptions of imaging conditions and clini-
cal protocols alongside visual data to perform both hypoth-
esis generation and downstream classification.

Automated Hypothesis Generation
To enable structured reasoning without relying exclusively
on human expertise, we introduce an automated hypothe-
sis generation module (Figure 2). This component trans-
forms clinical knowledge and experimental details into

machine-readable hypotheses that guide the VLM in inter-
preting ultrasound data for burn depth classification.

The process begins by constructing a prompt that fuses
two textual contexts: the experimental setup and the clini-
cal interpretation of imaging cues. Let Dexp represent de-
scriptive details of imaging modalities (e.g., “TDI provides
color-coded velocity maps; B-mode offers structural tissue
layers”), and Dclin capture clinical heuristics (e.g., “domi-
nant blue regions in TDI and disrupted layers in B-mode cor-
relate with full-thickness burns”). These are combined as:

p = PromptBuilder(Dexp,Dclin),

which yields a structured query supplying the language
model with sufficient background knowledge.

Given this prompt p, a large language model Mθ generates
both a natural-language hypothesis h and a set of first-order
logic (FOL) premises Φ = {ϕ1, ϕ2, . . . , ϕK} that encode
specific diagnostic rules. Sampling parameters such as tem-
perature and top-p sampling are varied to promote diverse
rule generation.

To validate the FOL premises, we employ the Z3 SMT
solver (de Moura and Bjørner 2008), which ensures logical
consistency. The solver iteratively removes contradictions
and guides refinement. Once a consistent set is reached or a
maximum iteration threshold is met, the remaining premises
are summarized into a final natural-language hypothesis. A
typical output might be: “Based on the presence of dominant
blue regions in TDI and discontinuous layers in B-mode, the
burn is indicative of full-thickness injury and may require
surgical intervention.”

This automated pipeline allows the system to dynami-
cally generate domain-specific reasoning without relying on
manual annotations or handcrafted logic, enhancing inter-
pretability and diagnostic performance.

Hypothesis and Logical Premise Generation
Given the unified prompt p, the model Mθ produces both a
hypothesis h and a corresponding FOL rule set Φ:

(h,Φ) = Mθ(p | τ, ptop),

where τ and ptop control generation diversity.

Consistency Verification via SMT Solver
To verify logical consistency, the set Φ is evaluated using
an SMT solver. If inconsistencies are detected, a refinement
loop is triggered:

Φ(ℓ+1) = Γ
(
Mθ

(
RefinePrompt(p,Φ(ℓ))

))
,

repeating until a consistent set is obtained or iteration limits
are reached.

Final Hypothesis Generation
Validated FOL rules are summarized into the final natural-
language hypothesis: “Based on the dominant blue pattern
in TDI and discontinuous layers in B-mode imaging, the
burn is likely full-thickness, suggesting surgical intervention
may be necessary.”



Figure 2: Automated hypothesis generation pipeline. The AURA framework initiates diagnostic reasoning by constructing
an input prompt that combines experimental descriptions with clinical context. (A) A pre-trained language model generates
initial diagnostic hypotheses along with first-order logic (FOL) premises describing associations between ultrasound imaging
features and burn severity. (B) An SMT solver checks the logical consistency of these premises, filtering out contradictions
and iteratively refining the rule set. (C) The validated premises are summarized into a final natural-language hypothesis, which
serves as structured guidance for downstream vision-language burn classification tasks.

Downstream Classification Tasks
Each ultrasound sample xi = (xTDI

i , xB
i ) is converted into

a composite RGB image zi ∈ RH×W×3. Classification uses
both visual and symbolic signals:

Binary classification:

ŷi = arg max
y∈{0,1}

{P (y | zi) + αS(h,Φ, y)} ,

Multi-class classification:

ĉi = arg max
c∈{1,2,3}

{P (c | zi) + β S(h,Φ, c)} .

Classification Variants with Hypothesis Integration
We experiment with three variants that integrate h:

1. Hypothesis+VLM:

ŷi = fVLM(zi, h) = argmax
y∈Y

P (y | zi, h).

2. Chain-of-Thought (CoT):

r(t) = Mθ(zi, h, r
(1), . . . , r(t−1)), ŷi = fCoT

VLM(zi, h, r).

3. CoT with Self-Consistency:

ŷi = Aggregate
(
{ŷ(k)i }Kk=1

)
,

using majority vote or averaging over multiple completions.

Logical Support Function
The alignment score S(h,Φ, y) quantifies how well the hy-
pothesis and rules support a given label y, using VLM-based
responses to queries such as: “Given the diagnostic hypoth-
esis: [h] and premises: [Φ], to what extent does this support
the diagnosis of [y]?” The VLM’s answer is mapped to a
numeric value used in classification.

Experiments
Dataset and Experimental Setup
We evaluate AURA on a retrospective dataset collected
over a one-year period at Eskenazi Burn Center, Indianapo-
lis, Trial Registration: NCT051674611. To the best of

1https://clinicaltrials.gov/study/NCT05167461

our knowledge, this is the first dataset to combine Tissue
Doppler Imaging (TDI) and B-Mode ultrasound for burn
depth assessment, enabling multi-modal reasoning beyond
traditional RGB-based approaches. The dataset includes ul-
trasound data from 29 patients with histologically or clin-
ically confirmed burn injuries, covering the full spectrum
of severity: superficial, superficial partial-thickness, deep
partial-thickness, and full-thickness (third-degree) burns.
Ground-truth labels were assigned via histopathology when
available (5 cases) or determined through consensus by
board-certified burn surgeons.

Each ultrasound sample contains both B-Mode frames,
capturing structural echogenicity, and TDI frames, encoding
perfusion-sensitive velocity information using pseudo-color.
To ensure quality, we retained only TDI frames flagged as
diagnostically optimal by the acquisition system—identified
by green markers indicating proper probe alignment and
coupling. From the raw sequences, 950 high-quality frames
were extracted and uniformly subsampled to reduce redun-
dancy and preserve scene diversity, resulting in 324 unique
frames for downstream analysis. Of these, 130 frames from
15 subjects are held out for evaluation, while the remaining
are used for few-shot prompts, chain-of-thought demonstra-
tions, and calibration examples.

While bedside digital photographs of the burn sites are
included, they are not temporally aligned with ultrasound
frames. These single still images are processed indepen-
dently by the VLM, and their outputs are fused with
ultrasound-based reasoning at the decision level. Imaging
parameters such as probe frequency and TDI velocity ranges
follow clinical best practices and are documented in the sup-
plementary material. Representative examples are shown in
Figure 3, illustrating the complementary information pro-
vided by the photographic and ultrasound modalities.

Hypothesis Generation and Vision–Language Mod-
els. For automatic diagnostic hypothesis generation,
we use OpenAI’s o3-mini-high, a compact LLM
tuned for symbolic reasoning and logical chaining.
Both expert-curated and automatically generated hypothe-
ses are evaluated within our framework to assess rea-
soning quality. For vision–language inference, we uti-
lize multiple foundation models, including gpt-4o,
gpt-4o-mini, gpt-4-turbo, gemini-2.0-flash,



Figure 3: A data sample from the burn dataset. Ultrasound
B-Mode and TDI are generated from wound.
and gemini-1.5-flash, selected for their strong multi-
modal reasoning capabilities, low latency, and compatibility
with structured prompting involving both visual and textual
inputs.

Unless otherwise specified, all experiments are conducted
under zero-shot or few-shot settings. To isolate the effect
of structured reasoning, we benchmark model performance
under identical input conditions using both expert-authored
and automatically generated hypotheses as scaffolds for
downstream prediction.

Evaluation Design
We evaluate AURA in three structured diagnostic tasks, each
designed to assess the framework’s reasoning capabilities
and its alignment with clinical expertise. Two of these set-
tings rely on automatically generated hypotheses, one for bi-
nary surgical decision-making and another for fine-grained
classification, while the third offers a comparative evalua-
tion against expert-authored reasoning. This design isolates
the impact of symbolic hypothesis generation across varied
levels of diagnostic complexity.

Surgical Decision-Making with Automated Hypothe-
ses. The first task evaluates binary classification: whether
surgical intervention is needed, based solely on B-Mode and
Tissue Doppler Imaging (TDI) inputs. Diagnostic hypothe-
ses are generated automatically using modality-specific
prompts. This setting assesses the framework’s ability to
support critical clinical decisions with no expert involve-
ment.

Fine-Grained Burn Depth Classification with Au-
tomated Hypotheses. The second task addresses three-
way classification, distinguishing superficial second-degree,
deep second-degree, and third-degree burns, using ultra-
sound inputs alone. Hypotheses are generated entirely by
the automated pipeline. This experiment probes AURA’s ca-
pacity to resolve subtle structural and perfusion differences
across similar burn types.

Comparative Evaluation: Expert vs. Automated Hy-
potheses. To evaluate the quality of automated diagnostic
reasoning, we conduct a direct comparison with structured
hypotheses written by board-certified burn surgeons. Us-
ing the same ultrasound inputs as in the surgical decision
task, we compare VLM predictions driven by expert- versus

LLM-generated reasoning. This isolates the contribution of
hypothesis source to final prediction quality.

Implementation Details. All experiments employ chain-
of-thought prompting and self-consistency decoding (Wei
et al. 2022; Wang et al. 2023). The VLM is queried multiple
times per input with varied temperature (0.5–1.0) and top-
p (0.5–1.0) sampling. Chain-of-thought exemplars are ran-
domly ordered and sampled to encourage diverse reasoning
paths. Final predictions are determined by majority vote over
the model outputs.

Results
We report findings across three evaluation settings aligned
with our proposed experimental design. Results assess (1)
surgical decision classification using automated hypotheses,
(2) fine-grained burn depth classification using automated
hypotheses, and (3) a comparative evaluation between auto-
mated and expert-generated hypotheses in surgical settings.

Surgical Decision with Automated Hypotheses Table 1
presents binary surgical decision performance when guided
solely by automatically generated hypotheses. The highest-
performing model, GPT-4o, achieves 93% accuracy and
0.93 F1-score, significantly outperforming its unguided
base version (33% accuracy). Similarly, GPT-4 Turbo
achieves 93% accuracy, confirming that structured diagnos-
tic guidance provides consistent benefits.

Smaller and faster models also see major gains. For in-
stance, GPT-4o-mini improves from 67% to 80% accu-
racy, and Gemini 2.0 improves from 47% to 87%.

Table 1: Surgical decision performance with automatically
generated hypotheses.

Model Accuracy F1 Precision Recall

GPT-4o + Auto Hypothesis 93% 0.93 0.94 0.93
GPT-4o (Base) 33% 0.17 0.11 0.33
GPT-4o-mini + Auto Hypothesis 80% 0.77 0.85 0.80
GPT-4o-mini (Base) 67% 0.67 0.69 0.67
GPT-4 Turbo + Auto Hypothesis 93% 0.93 0.94 0.93
GPT-4 Turbo (Base) 87% 0.87 0.87 0.87
Gemini 2.0 + Auto Hypothesis 87% 0.86 0.89 0.83
Gemini 2.0 (Base) 47% 0.41 0.79 0.47
Gemini 1.5 + Auto Hypothesis 80% 0.79 0.85 0.80
Gemini 1.5 (Base) 60% 0.50 0.42 0.60

Fine-Grained Burn Classification with Automated Hy-
potheses Table 2 shows model performance on three-class
burn depth classification (second-degree superficial, second-
degree deep, and third-degree). Once again, hypothesis-
guided models substantially outperform their base variants.
GPT-4o leads with 87% accuracy, while Gemini 1.5

improves from 47% to 67%. However, some base mod-
els (e.g., GPT-4o-mini) perform competitively with-
out hypothesis support, suggesting inherent capabilities for
moderate-granularity distinctions.

Expert-Guided vs. Automated Hypotheses (Surgical De-
cision) As part of our comparative evaluation, we assess



Table 2: Fine-grained burn classification using automated
hypotheses.

Model Accuracy F1 Precision Recall

GPT-4o + Auto Hypothesis 87% 0.87 0.87 0.87
GPT-4o (Base) 27% 0.27 0.34 0.27
GPT-4o-mini + Auto Hypothesis 53% 0.42 0.53 0.53
GPT-4o-mini (Base) 73% 0.71 0.73 0.73
GPT-4 Turbo + Auto Hypothesis 53% 0.52 0.56 0.53
GPT-4 Turbo (Base) 60% 0.59 0.62 0.60
Gemini 2.0 + Auto Hypothesis 60% 0.50 0.64 0.60
Gemini 2.0 (Base) 47% 0.46 0.60 0.47
Gemini 1.5 + Auto Hypothesis 67% 0.62 0.79 0.67
Gemini 1.5 (Base) 47% 0.43 0.46 0.47

how the best-performing automated setup (GPT-4o with
auto-generated hypotheses) fares against expert-written hy-
potheses. Results are shown in Table 3.

While the expert-guided model achieves slightly higher
accuracy (95% vs. 93%) and perfect recall, the auto-
mated hypothesis system demonstrates nearly equivalent
performance across all metrics. Specifically, GPT-4o with
auto hypotheses achieves a 0.93 F1-score and 0.94 preci-
sion—matching or closely approaching expert-level diag-
nostics.

This minimal performance gap highlights the clinical po-
tential of automated reasoning to deliver expert-aligned out-
puts, especially when expert curation is not feasible in real-
time or resource-limited environments.

Table 3: Comparison between expert-guided and automated
hypotheses (GPT-4o) on surgical decision classification.

Method Accuracy F1 Precision Recall

GPT-4o + Expert Hypothesis 95% 0.95 0.94 1.00
GPT-4o + Auto Hypothesis 93% 0.93 0.94 0.93

Qualitative Analysis. Figure 4 showcases a representa-
tive example where multimodal cross-reasoning plays a crit-
ical role. The input consists of co-registered B-mode and
TDI ultrasound frames. The hypothesis-based framework
leverages a structured natural language explanation that ex-
plicitly links B-mode indicators of tissue integrity with per-
fusion patterns visible in TDI—particularly the presence of
blue hues in subcutaneous regions, which signify preserved
blood flow and tissue viability. The vision-language model,
guided by these hypotheses, performs coherent cross-modal
alignment, correctly inferring a deep partial-thickness burn
that does not warrant surgery. This contrasts sharply with
the base GPT-4o output, which lacks structured reasoning
and instead defaults to a coarse interpretation of visual cues.
As a result, it erroneously predicts a third-degree (surgical)
burn by misinterpreting surface texture and depth cues.

This example illustrates how integrating symbolic reason-
ing enables the VLM to synthesize insights across struc-
tural and perfusion modalities—an essential capability for
nuanced clinical assessments.

Figure 4: Qualitative comparison between the hypothesis-
based framework (left) and base GPT-4o (right) on multi-
modal ultrasound input. The hypothesis-guided model in-
tegrates structural (B-mode) and perfusion (TDI) cues to
reason that blue-coded regions localize within the dermis
and subcutaneous tissue, supporting a deep partial-thickness
(non-surgical) diagnosis. In contrast, GPT-4o without struc-
tured reasoning overestimates severity based solely on sur-
face features, yielding a false third-degree burn prediction.

Deployment
We designed the proposed system with practical clinical de-
ployment in mind, focusing on real-world feasibility, inter-
pretability, and integration into decision-support workflows.
While not yet deployed in live hospital settings, the system
was tested retrospectively using data collected in authentic
clinical environments and integrated into a simulated Elec-
tronic Medical Record (EMR) interface to demonstrate de-
ployment readiness. Below, we describe key aspects relevant
to the deployment.

Integration with Clinical Workflow
We integrated the AI framework with DrChrono (Ever-
Health 2025), a commercial EMR platform. Using a training
account provided for medical professionals, we developed a
Python-based application that interacts with the DrChrono
Developer API to upload clinical imaging data, such as dig-
ital photographs and ultrasound videos, and retrieve corre-
sponding AI-driven diagnostic predictions. The system op-
erates through a Web-based API, which ensures compati-
bility with mobile and tablet platforms. This demonstrates
technical feasibility and supports future deployment in real-
time clinical or telemedicine environments. An illustration
is given in Figure 5.

Hardware and Infrastructure
Although ultrasound is not yet a standard diagnostic tool in
burn care, we demonstrated feasibility by collecting B-mode
and Tissue Doppler Imaging (TDI) data using the LOGIQ
E9 ultrasound system (GE Healthcare Technologies Inc.)



Figure 5: Illustration of the AI-enabled decision support sys-
tem for burn diagnosis integrated with an EMR platform.
The system retrieves imaging data (e.g., ultrasound and dig-
ital photographs) from the EMR, performs real-time reason-
ing using proposed AI model, and returns surgical triage rec-
ommendations alongside natural language explanations with
confidence scores. The mobile-ready interface enables clin-
icians to review diagnostic reasoning at the point of care,
supporting expert decision-making in both hospital and re-
mote settings.

with a 16 MHz probe. All scans followed standard clini-
cal procedures, and data collection was conducted in real
clinical environments, although not during real-time hospi-
tal operations. This study is the first to propose and evaluate
the use of TDI for burn diagnosis, highlighting its utility in
assessing deep tissue injuries in severe burn cases.

Human-in-the-Loop and Decision Support
The system is explicitly intended to support clinical ex-
perts by serving as a decision support tool. It provides in-
terpretable justifications for every diagnostic output, which
can help guide human experts in high-risk or ambiguous
cases. The design allows for expert override at all stages of
the workflow, reinforcing safe and collaborative AI-assisted
medical decision-making.

Findings and Practical Insights
• The system provides near real-time diagnosis, with

end-to-end inference typically completed in under one
minute. This includes both EMR data processing and AI
inference.

• Digital photographs proved effective for identifying su-
perficial burns, whereas ultrasound imaging, especially
TDI, was crucial for accurate assessment of deep burn
injuries.

• The framework integrates diverse imaging modalities to
produce coherent and interpretable diagnostic outputs,
reducing reliance on expert presence at the point of care.

• Diagnostic outputs are expressed in natural language
with associated confidence scores in percentage format,
supporting clinical interpretability and trust.

• The modular inference pipeline enables flexible cost-
aware diagnostics. For example, ultrasound imaging may
be skipped when superficial burns are confidently de-
tected from photographs.

• The architecture is suitable for deployment in low-
resource environments and can be extended easily to mo-
bile or tablet-based platforms via its API design.

Remaining Challenges and Deployment Path

The current system relies on API-based access to vision-
language models, but it is compatible with open-source or
in-house alternatives. Since the framework only requires
model inference rather than training, it can be deployed
using standard GPUs (e.g., with 16GB memory), enabling
cost-effective implementation in clinical or remote envi-
ronments without specialized hardware. Although Tissue
Doppler Imaging (TDI) is not widely used in burn care, this
study demonstrates its feasibility using conventional ultra-
sound systems, potentially encouraging its adoption.

Conclusion

This work introduces a framework that combines automated
diagnostic hypothesis generation with vision-language mod-
els (VLMs) to enable robust multimodal reasoning over
medical imaging for burn severity assessment. By incorpo-
rating structured first-order logic to guide visual interpre-
tation, the system performs expert-level surgical triage and
fine-grained classification directly from raw clinical imaging
without requiring large-scale annotated datasets. The frame-
work was evaluated on a real-patient dataset collected at a
U.S. burn center, achieving up to 93% accuracy in surgi-
cal classification and 87% in burn depth prediction. These
results significantly surpass the accuracy of traditional clin-
ical practice based on human visual inspection. The find-
ings demonstrate the system’s ability to integrate hetero-
geneous modalities, including B-Mode ultrasound and Tis-
sue Doppler Imaging, into a coherent diagnostic reason-
ing process that enhances both reliability and interpretabil-
ity in clinical decision-making. The paper also presents a
deployment-oriented system design, including EMR inte-
gration, interface prototyping, and performance considera-
tions for real-world implementation. Ultimately, this work
highlights the transformative potential of automated multi-
modal reasoning to bridge the gap between general-purpose
foundation models and domain-specific medical applica-
tions. It offers a scalable and clinically meaningful approach
for deploying AI in real-world burn care, particularly in
data-limited clinical settings.
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