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ABSTRACT
Information Retrieval (IR) plays a key role in diverse Software Engi-
neering (SE) tasks. Similarity metric is the core component of any IR
techniques whose performance differs for various document types.
Different SE tasks operate on different types of documents like bug
reports, software descriptions, source code, etc., that often contain
non-standard domain-specific vocabulary. Thus, it is important to
understand which similarity metrics are suitable for different SE
documents.

We analyze the performance of different similarity metrics on
various SE documents including a diverse combination of textual
(e.g., description, readme), code (e.g., source code, API, import pack-
age), and a mixture of text and code (e.g., bug reports) artifacts. We
observe that, in general, the context-aware IR models achieve better
performance on textual artifacts. In contrast, simple keyword-based
bag-of-words models perform better in code artifacts.
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1 MOTIVATION
Measuring document similarity is a key component of any IR tech-
nique. A similarity metric measures the similarity between two
documents. An IR technique typically computes similarity scores
between a query and candidate documents and ranks the latter
based on the decreasing value of the similarity score. Thus, it is
important to use appropriate similarity metric for different types
of SE documents since the notion of similarities may vary for docu-
ments containing source code and texts with non-standard English
vocabulary.

SE artifacts often contain a diverse set of information including
source code, bug reports, project descriptions, API documentation,
etc., which can be quite different from natural language [3]. For
example, a bug report that primarily contains natural language text
with domain specific keywords is linguistically very different than
source code or execution traces. In addition, the notion of simi-
larities may also vary for source code, text using domain-specific
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non-standard vocabulary, and regular text written in natural lan-
guage. Thus, it is important to use appropriate similarity metric
based on their document types. Despite the importance of choosing
proper similarity metrics, it is not clear that how suitable standard
similarity metrics are for such diverse SE corpora.

In this work, we address this issue by systematically exploring
the effect similarity metrics choice for different software artifacts.
In particular, we evaluate the effectiveness of four popular met-
rics: Vector Space Model (VSM) [14], Latent Semantic Indexing
(LSI) [7], BM25 [12], and embedding based Word Mover’s Distance
(WMD) [5] on different SE documents. Each of these metrics has its
own benefit and therefore has its preferred domain. For example,
in SE literature, VSM [16, 19] and LSI [9, 10] are commonly used,
while BM25 is popular in general purpose search engine, and WMD
is the state-of-the-art similarity metric for natural language docu-
ment classification. Recently, researchers start proposing the word
embedding based models to improve different SE tasks [15, 18].
Thus, we choose different metrics that are known to be effective
for different SE tasks and analyze them thoroughly for SE artifacts.

2 EXPERIMENT
We conduct the experiment on three artifact types and measure the
performance of four similarity metrics.

2.1 SE Document Artifacts
We collect document artifacts from GitHub projects (i.e. Textual and
Code) and bug-reports [16] (e.g., mixture of code and text) dataset.
Textual Artifacts.We consider GitHub projects’ description and
readme content as textual artifacts. Project description on GitHub
is often short and concisely represent the project task. On the other
hand, the README file of a project that usually contains a detailed
description including how to install and run it.
Code Artifacts.We consider GitHub projects’ source code infor-
mation as code artifacts. In particular, we extract Method & Class
name, Import Package name, API name from GitHub projects. We
use Eclipse JDT [4] framework to collect these information.
Mixture of Text and Code. We use a benchmark bug report
dataset (i.e. JDT project) [16] which contains textual descriptions
of bugs, execution traces which is mostly code, and source code
information where the bug should be located.

2.2 Similarity Metrics
VSM represents documents as N-dimensional vectors where each
dimension corresponds to a separate word or term. Then the sim-
ilarity between two documents is computed as the cosine angle
between corresponding vectors.
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BM25 is a probabilistic retrieval metric that ranks documents based
on the number of query terms present in each document. It treats a
particular matching term’s importance in the document and query
differently and uses document length normalization.
LSI projects a higher dimensional document-term co-occurrence
frequency matrix into a lower dimensional latent space to create
document vectors. After inferring the lower dimensional vector
of both query and documents, cosine similarity can be used to
compute the similarity between two vectors.
WMD is based on the concept that similar words should have simi-
lar context words [2] thus similar embedding. WMD [5] leverages
word embedding [11] to compute similarity between query and
documents.

2.3 Experimental Setup
We use similar GitHub projects to collect the ground-truth for the
artifacts extracted from GitHub (i.e. description, readme, method &
class, import package, and API). If two GitHub projects implement
similar functionality (e.g., media player, text editor, etc.) we consider
them as similar. Thus if two documents,D1 andD2 of a feature (e.g.,
description) come from similar functional project we consider these
two as relevant documents. If an IR model (e.g., BM25) can retrieve
D2 when we search with the query D1, we consider that as a hit
(i.e. correct retrieval) otherwise a miss (i.e. incorrect retrieval). We
manually annotate 1590 GitHub projects to its functional categories.

On the other hand, in the case of searching with the bug report,
if an IR model can retrieve the source file where the bug is located
we consider that as hit and otherwise a miss [16].

In all cases, we tune the models for each artifact to its optimal
performance and use standard mean average precision (MAP) and
mean reciprocal rank (MRR) [8] as our evaluation metrics.

2.4 Results
For textual artifacts, we find context-aware models such as LSI and
WMD are in general better, while the keyword based bag-of-words
(BOW)model VSM performs best for code only artifacts. In contrast,
for mixture (i.e. bug reports) documents, BM25 performs the best.
Surprisingly, BM25 is not that effective for text only and code only
artifacts.

3 IMPLICATION AND FUTUREWORK
Typically, SE researchers use well-established IR techniques to mea-
sure document similarity. The advantage of using such techniques
is that they are already stable, fine-tuned, and well explored. How-
ever, these models are primarily refined for natural language text
corpora. From our results, we find that these retrieval models are
highly sensitive to the nature of documents. Thus, for a particular
IR-based SE task (e.g., bug localization [16]), it is important to un-
derstand what type of similarity metric is suitable for its artifact
type.

To incorporate special characteristics (i.e. structure and vocabu-
lary) of SE documents, researchers have started adapting different
techniques: query reformulations (e.g., [1]), incorporating code
structure in IR systems (e.g., [13]), using domain-specific meta-
data (e.g., [16]), feature extraction (e.g., [17]), and deep learning
(e.g., [6]). In addition to these approaches, an informed similarity
model choice might lead to an improved performance. In future, we

want to investigate how we can incorporate this knowledge into
any IR-based SE task. Furthermore, we want to explore whether
this informed choice of similarity metrics can improve the overall
performance of SE tasks (e.g., bug localization [16]).
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