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ABSTRACT

A central challenge in reinforcement learning (RL) is defining reward signals that
reliably capture human values and intentions. Recent advances in vision—language
models (VLMs) suggest they can serve as a powerful source of semantic rewards,
offering a flexible alternative to environment-defined objectives. Unlike hand-
crafted signals, VLM-based feedback can reflect high-level human goals such as
safety, efficiency, and comfort. We first analyze the conditions under which VLM-
based rewards enable effective learning. In particular, we highlight the importance
of monotonicity with respect to true task performance and the satisfaction of the
Markov property. When these conditions hold, VLMs provide a viable basis for
reward inference. On the algorithmic side, we identify what learning strategies are
best suited for such rewards. Trajectory-based methods such as policy gradient (e.g.,
REINFORCE, PPO) are naturally aligned with inferred returns, whereas Q-learning
style algorithms are more fragile because they operate on step-wise Bellman
updates (e.g., DQN) and implicitly assume the Markov property of rewards. This
perspective reframes RL around reward inference rather than reward specification,
highlighting both the promise of VLM-based alignment and the theoretical and
practical boundaries of when such methods are effective. Experiments across
control domains provide supporting evidence for these insights. In particular,
monotonicity appears to align with learning outcomes, REINFORCE and PPO
show greater robustness than DQN when trained with inferred rewards, and natural
language prompts can guide the emergence of instruction-driven behaviors.

1 INTRODUCTION

Reinforcement learning (RL) has delivered striking successes in games, robotics, and control, but
its practical use continues to be constrained by a fundamental problem: reward design. Standard
formulations assume that the designer can specify a reward function that faithfully encodes the
intended task. In practice, this assumption rarely holds. Many desirable goals, such as safety,
efficiency, or comfort, are difficult to quantify numerically. Even small mismatches between the
intended objective and the coded reward can lead to unsafe or unintended behavior (Rusu et al.,|2017;
Levine et al.| 2018} Pinto & Gupta, 2016). The reward specification problem remains one of the main
barriers to scaling RL to real-world settings (He et al., 2024} |Anderson et al.} [2021; [Kadian et al.,
2020; |Chang et al., 2025; Hsu et al.| [2023]).

Recent advances in vision—language models (VLMs) suggest a promising alternative. Models such as
CLIP (Radford et al.,[2021) embed images and text into a shared semantic space, enabling natural
language descriptions to act as reward signals. With the right prompt, an RL agent can be guided
toward behaviors without requiring manually engineered objectives. Unlike hand-crafted signals,
VLM-based feedback can be flexibly updated by changing the prompt and can capture high-level
semantic goals. Early results have demonstrated that such inferred rewards can support RL in a
variety of domains (Rocamonde et al.| [2024} Baumli et al.| 2023} [Wang et al., 2024} (Chan et al.| [2023];
Du et al., |2023; Sontakke et al., 2023} [Yang, [2024; [Yu et al., 2023} Schoepp et al., 2025} Ye et al.,
2025)), raising the possibility of scalable and language-driven alignment.

Yet, simply substituting environment-defined signals with VLM-based rewards does not guarantee
success. Inferred rewards are noisy and context-dependent, and their usefulness depends on structural



properties. We identify order-preserving monotonicity as an important condition: inferred rewards
should preserve the ordering of trajectories with respect to true performance. To support this claim,
we introduce evaluation metrics such as pairwise agreement and rank correlation (Kendall’s 7,
Spearman’s p) that allow monotonicity to be measured in benchmark settings where the true reward
is available. These metrics are not intended as standalone tools, but as a methodology for validating
when inferred rewards provide a reliable learning signal and for guiding prompt design to maximize
alignment with intended goals.

Our analysis further suggests that algorithmic families differ in their suitability for inferred rewards.
Policy gradient methods align naturally with trajectory-level signals, while value-based approaches
such as Q-learning rely on Bellman updates that assume step-wise Markovian rewards. When this
assumption is violated, value-based methods may propagate errors, offering a possible explanation for
instabilities observed in prior work with semantic reward models (Rocamonde et al., 2024; |Baumli
et al., [2023)). We additionally highlight the role of quasi-Markov structure induced by short temporal
windows of observations, which affects value-based methods more strongly than trajectory-based ones.
This perspective not only helps interpret past results but also opens new directions: improving policy
gradient methods to exploit trajectory-level structure more effectively, and rethinking value-based
updates to accommodate non-Markovian settings.

Empirically, we validate these insights across classic control and continuous control domains. Our
experiments show that trajectory-based methods such as REINFORCE and PPO can successfully
leverage inferred rewards to achieve performance comparable to ground-truth rewards, while Q-
learning methods such as DQN struggle when monotonicity and Markov assumptions do not hold.
We further demonstrate that prompt choice directly affects monotonicity, highlighting the potential for
systematic prompt design to improve alignment. We further study how prompt choice and temporal
window size affect monotonicity and quasi-Markov structure, providing practical levers for improving
reward alignment. Together, these results provide both practical guidance and new challenges for
integrating language-driven rewards into reinforcement learning.

Our contributions are as follows:

* Conceptual framework and theoretical analysis establishes conditions under which inferred
rewards support effective learning by emphasizing order-preserving monotonicity of trajec-
tory returns as a key property.

* Algorithmic analysis examines how different reinforcement learning families interact with
inferred rewards and shows that trajectory-based methods such as REINFORCE and PPO
are more robust than step-wise value-based methods such as DQN.

* Practical monotonicity measure proposes metrics for quantifying monotonicity that validate
inferred rewards in benchmark settings and can guide prompt design.

» Empirical results demonstrate that inferred rewards can match ground-truth performance in
standard tasks, exhibit predictable behavior as monotonicity and quasi-Markov structure
vary, enable novel instructed behaviors, and reveal limitations in handling semantically
complex instructions.

2 BACKGROUND AND RELATED WORK

Reinforcement Learning and Reward Design. Reinforcement learning (RL) is commonly for-
mulated under the Markov Decision Process (MDP) framework, where an agent interacts with an
environment defined by the tuple (S, A, P, r,). At each timestep ¢, the agent observes a state s; € S,
takes an action a; € A, and receives a scalar reward ry = r(s;, a;) from the environment. The agent
then learns a policy 7(a¢|s;) that maximizes the expected discounted return. While this formulation
has yielded many breakthroughs, it assumes that the environment can provide a meaningful and
consistent reward signal. In practice, this assumption rarely holds. Reward functions are often hand
crafted, encoding brittle heuristics or proxy objectives that agents can exploit in unexpected ways. As
a result, poorly designed rewards may encourage reward hacking or other unintended behaviors. In
real-world deployments such as robotics or interactive systems, the challenge is even more acute:
reward signals may be unavailable, delayed, or unobservable (He et al., 2024 |Anderson et al., 2021}
Kadian et al.|[2020; |Chang et al., 2025} |[Hsu et al., 2023} Rusu et al.| 2017; Peng et al.| 2018 James
et al.,[2017; |Hsu et al., 2023; Levine et al., 2018} |Pinto & Gupta, [2016)).



Approaches Beyond Hand-Crafted Rewards. Recognizing this challenge, a variety of approaches
have been proposed. Inverse reinforcement learning (IRL) (Ng & Russell, [2000) infers reward
functions from expert demonstrations or preference data, providing a principled route toward human-
aligned objectives. However, IRL typically requires extensive curated data and repeated human
input, limiting its scalability. Preference-based RL and RLHF further leverage human comparisons
or language feedback to train reward models, but similarly do not characterize when the inferred
rewards are suitable for downstream RL optimization (Christiano et al., 2017} [Ibarz et al.l 2018}
Stiennon et al.,|2020). Intrinsic motivation methods such as curiosity driven exploration (Pathak et al.,
2017;Burda et al., |2018) generate task-agnostic signals that encourage agents to seek novelty, but
by design they remain disconnected from external goals. Similarly, goal-conditioned reinforcement
learning (Andrychowicz et al.,2017)) incorporates goal vectors into policies and has shown impressive
adaptability, yet it still depends on external rewards to ground those goals. Each of these directions
makes important progress, yet the fundamental issue of specifying rewards that capture high-level
objectives remains unresolved.

Vision-Language Models and Supervised Approaches. In parallel, large-scale supervised learning
has advanced rapidly. Vision-language-action (VLA) models (Zitkovich et al.,|2023; Brohan et al.|
2022; |[Kim et al., 2024} /O’ Neill et al., [2024) leverage paired image, text, and action data to train
policies capable of following natural language instructions. These models illustrate the power
of multimodal training and achieve strong generalization across tasks. Yet they also highlight a
limitation: because they rely on large-scale labeled data and lack the trial-and-error dynamics of
reinforcement learning, they do not inherit the adaptability of reward-driven methods. Their strengths
therefore lie in supervised imitation rather than in autonomous discovery.

Recent developments in pretrained vision-language models (VLMs) such as CLIP (Radford et al.|
2021), VideoCLIP (Xu et al., [2021), Flamingo (Alayrac et al.,[2022)), GPT-4 (Achiam et al.| [2023)),
LLAVA (Liu et al.,2023};[2024), and Qwen (Yang et al.l|2025) broaden the possibilities further. These
models encode rich semantics across vision and language, showing remarkable generalization to
novel inputs. They have been used effectively for perception, retrieval, and auxiliary scoring. Their
capacity to ground instructions in visual observations naturally suggests a role as reward providers,
bridging reinforcement learning with high-level semantic goals.

Reward Inference with VLMs. Several works have already begun exploring this potential. Roca-
monde et al. (Rocamonde et al., 2024) demonstrate that VLMs can act as zero-shot reward models,
allowing agents to learn from prompts without manually engineered signals. Baumli et al. (Baumli
et al.}2023) study how model capacity affects the fidelity of such rewards, and (Wang et al.l 2024)
integrate VLM feedback into reinforcement learning pipelines to generate task-specific signals. Other
efforts such as RoboCLIP (Sontakke et al.,|2023) and RL-VLM-F (Yang| |2024)) analyze practical
stability issues of VLM-derived rewards, though they focus on reward construction rather than deter-
mining when such rewards are theoretically or algorithmically suitable for RL. These contributions
establish the feasibility of VLM-based rewards and provide valuable insight into their strengths and
limitations. At the same time, most of these works treat reward models as external scorers, leaving
open the question of what conditions make them effective learning signals and which algorithms can
best exploit them.

Reward-Free Frameworks. A complementary body of research has questioned the very necessity
of external rewards. Reward-free frameworks argue that agents can develop competence through
other principles, such as skill discovery or representation learning. For example, DIAYN (Eysenbach
et al.l 2019) encourages agents to acquire diverse behaviors by maximizing discriminability, while
curiosity-driven exploration (Burda et al.| 2018) motivates visiting novel states. These directions
elegantly bypass the brittleness of hand-designed rewards, though they stop short of offering explicit
alignment with semantic or task-specific objectives.

Position of This Work. Our work builds on these foundations and takes a step toward connecting
semantic models with reinforcement learning theory. Rather than assuming that environment-provided
signals are always available or reliable, we study when inferred semantic rewards can act as effective
surrogates. We identify structural properties, in particular monotonicity of trajectory returns and
quasi-Markov structure, as central to their reliability. In contrast to RLHF, preference learning, or
prior VLM-reward methods, our goal is not to construct new reward models but to characterize
when inferred rewards are suitable for trajectory-based policy gradient methods such as PPO and
REINFORCE, and when they are fundamentally incompatible with value-based approaches such as



DQN. We analyze which algorithmic families are most compatible with such signals, and propose
practical metrics to evaluate and guide reward inference in benchmark settings. In this way, our study
complements prior empirical demonstrations by providing a conceptual framework that clarifies when
semantic rewards succeed, when they fail, and how they might be improved.

3 INFERENCE-BASED RL FRAMEWORK (INFERL)

In standard reinforcement learning, an agent operates within a Markov Decision Process (MDP),
defined by the tuple (S, A, P, r,~), where r is a scalar reward provided by the environment. The agent
aims to learn a policy 7 (a|s) that maximizes the expected cumulative reward: Er [>,°  v'7(s¢, ar)] .

This framework assumes that the environment provides a reliable and well-specified reward at each
step. In practice, however, reward signals are often incomplete, noisy, or misaligned with the intended
task, which can lead to undesirable behaviors even if the agent succeeds at maximizing the formal
objective. We introduce a framework in which the reward function is inferred by the agent itself
(Figure [2)). We refer to this formulation as Inference-Based Reinforcement Learning (InfeRL),
highlighting its central departure from standard RL: environment-provided rewards are replaced
with internally inferred signals. Throughout the paper, we use the term InfeRL to denote both the
framework and the accompanying analysis.

Reward Inference from Goals. The inference-based formulation augments the MDP by introducing
a goal space G and a reward inference function fi,:

M/ = (87"45 P7g7finf57)'

Here, G denotes high-level task goals (e.g., language prompts or images), and fir : (7,9) — R
maps a trajectory prefix 7 and a goal g to a scalar reward. In general, fi,; may take many forms
depending on how goals are represented and how behavior is evaluated, ranging from classifiers to
embedding-based similarity functions. This general structure captures the idea that the agent’s reward
is not provided by the environment but instead inferred through alignment with the specified goal.

It is important to note that in this formulation, the reward inference function fiys is part of the
agent, not the environment. While in practice we instantiate fi,; with a pretrained perceptual model
(e.g., CLIP), conceptually this mechanism belongs to the agent’s design and policy learning process.
The environment does not provide inferred rewards; rather, the agent generates them internally by
evaluating its own behavior against the specified goal. This distinction is crucial, as it separates the
alignment challenge of reward inference from the external specification of the environment. This
distinction is important in our later analysis of monotonicity and quasi-Markov structure, where the
suitability of the inferred reward depends on the agent design rather than the environment.

To make the discussion concrete, we adopt a commonly used instantiation that has appeared in prior
works and serves as the basis for our experiments. At the beginning of each episode, the agent
is assigned a fixed goal prompt g € G. During interaction, it collects short trajectory segments
7t = [It—g41,. - ., 1¢] of observations, where k denotes the segment length. In the simplest case
k = 1, the inferred reward is based only on the most recent observation, while larger values of &
allow the reward to depend on a short history of frames. At every step, a pretrained perceptual model
(e.g., CLIP (Radford et al., 2021)) computes alignment as

Ty = finf(Ttyg) = (v COS (fvision(Tt); fteXt(g))a

where « is a scaling parameter. The functions fyision and fiexe embed short trajectories and goal
descriptions into a shared representation space, and their cosine similarity serves as the inferred
reward. This instantiation grounds the abstract framework in a concrete implementation while still
allowing us to analyze the broader theoretical properties of inference-based rewards. At the same
time, because the inferred reward depends on trajectory fragments rather than solely on the current
state and action, it does not strictly satisfy the Markov property, making it a quasi-Markov signal
whose effect on policy gradient and value-based methods differs in predictable ways.

Goal-Conditioned Policies. We condition the policy on the embedding of the goal, u = fiexi(g),
which allows a single agent to generalize across tasks and instructions: w(a; | s¢, ). This enables the
agent to adapt to new instructions at test time without retraining, as new goals can be incorporated
directly through the reward inference mechanism. Importantly, the goal affects learning only through
the inferred reward and its embedding, not through environment-provided supervision.



Interpretation. Inference-Based RL (InfeRL) preserves the trial-and-error structure of reinforcement
learning but replaces externally specified rewards with semantically inferred signals. By grounding
reward in a goal specification, this framework provides a formal lens on recent attempts to use
pretrained models as reward providers. It also highlights the central question: under what conditions
do such inferred rewards behave like reliable substitutes for environment-defined objectives? The
rest of this paper develops theoretical criteria, algorithmic implications, and empirical evaluations
to answer this question. In later sections we show that order-preserving monotonicity governs the
suitability of these signals for trajectory-based policy gradient methods such as REINFORCE and
PPO, while quasi-Markov structure plays a key role for value-based methods.

Monotonicity and the Markov Property. A central requirement for inference-based rewards
to serve as effective surrogates is that they preserve the ordering of trajectories with respect to
task performance. Formally, we use the order-preserving formulation: if R(r;) < R(7y) then
R(71) < R(72). This monotonicity condition ensures that optimizing with respect to the inferred
signal leads to policies that also improve true task outcomes. A related but distinct issue is whether
the inferred reward satisfies the Markov property, depending only on the current state and action
rather than the full trajectory. While this property often fails for inference-based signals, the resulting
quasi-Markov structure helps explain why some algorithmic families are more robust than others.
Our subsequent analysis examines when monotonicity holds, how to measure it in practice, and what
algorithmic strategies can mitigate the absence of these assumptions.

4 THEORETICAL ANALYSIS OF INFERENCE-BASED REWARDS

Inference-based reinforcement learning departs from the standard MDP formulation by replacing
externally defined rewards with signals inferred from a perceptual model. This modification raises
fundamental theoretical questions: under what conditions can such inferred rewards still support
effective learning, and what assumptions are required for different classes of algorithms? We identify
two key properties, monotonicity and the Markov assumption, that play distinct roles in determining
the reliability of learning under inferred rewards.

4.1 MONOTONICITY OF INFERRED REWARDS

Definition. A central requirement for inference-based rewards to serve as reliable surrogates is that
they preserve the ordering of trajectories with respect to true task performance. Let R(7) denote the
true return of a trajectory 7, and R(T) the inferred return produced by fi,. We use an order-preserving
formulation of monotonicity: for any two trajectories 71, 7o,

R(r) <R(r2) = R(n) < R(n), )

Equivalently, whenever the inferred return ranks 75 at least as high as 71, the true return does not
contradict this ordering. This condition ensures that the inference function fiys preserves the relative
ranking of behaviors, even if the inferred rewards differ in scale or contain noise. When monotonicity
holds, optimizing with respect to R(T) will guide the agent toward trajectories that also improve the
true return R(7). By contrast, violations of monotonicity can result in reward misalignment, where
fint favors trajectories that appear successful under the inferred signal but in fact degrade true task
performance.

At the framework level, monotonicity formalizes when internally inferred signals can safely replace
environment-provided rewards. It highlights that the key property is not the absolute accuracy of the
reward values, but their ability to order trajectories consistently with the underlying task objective.
This makes monotonicity a central criterion for analyzing the effectiveness of inference-based
reinforcement learning.

Measuring Monotonicity. Monotonicity can be quantified by comparing the ordering of trajectories
under the true return R(7) and the inferred return R(T) Concretely, given a collection of trajectories
{7}, one may compute: (i) pairwise agreement, the fraction of trajectory pairs (7;,7;) for which
the ordering induced by R(7) and R(T) is consistent; (ii) rank correlation measures such as Kendall’s
7 or Spearman’s p. Together, these metrics provide a practical monotonicity score and guide design
choices such as prompt specification or trajectory representation.



4.2 THEORETICAL ROLE OF MONOTONICITY IN POLICY IMPROVEMENT

Monotonicity ensures that optimizing the inferred return remains aligned with the true task objective.
When rewards are inferred from a vision—language model, their scale and noise properties may differ
significantly from the environment-provided reward. What matters for learning, however, is whether
the inferred return preserves the ordering of trajectories under the true return. If an update increases
the expected inferred return, it should also increase the expected true return. This requirement does
not rely on Markovian assumptions and depends only on the relative ranking of complete trajectories.

Formally, under the order-preserving condition in equation [I] the inferred reward never contradicts
the ordering of trajectories induced by the true reward.

Lemma. Let R(T) be an inferred return satisfying the order-preservation condition in . Any

policy update that increases the expected inferred return B [R(7)] also increases the expected
true return B, [R(7)].

Proof sketch. Policy gradient methods increase the probability of trajectories with larger R(T) By

monotonicity, such trajectories must also have larger R(7). Thus updates that improve E[R(7)]
necessarily improve E[R(7)]. This argument operates at the level of full trajectories and does not
require 7 to be Markovian.

This lemma applies directly to REINFORCE, which performs unbiased Monte Carlo policy gradient
updates using complete trajectory returns. While PPO includes a value baseline, the critic is used only
for variance reduction. As a result, PPO inherits the robustness properties of trajectory-level methods
and remains effective even when inferred rewards are non-Markovian. In contrast, value-based
methods rely on Markovian per-step rewards and may therefore propagate inconsistent updates when
7+ depends on short temporal windows.

4.3 MARKOV PROPERTY OF INFERRED REWARDS

Definition. In the standard MDP formulation, the reward function is assumed to satisfy the Markov
property, depending only on the current state and action. Formally, r (s, a;) is determined solely by
(s¢, at), independent of the past trajectory. This assumption underlies many theoretical guarantees
in reinforcement learning, particularly for algorithms based on dynamic programming and Bellman
equations. In inference-based reinforcement learning, however, rewards are produced by an inference
function fiy that often depends on trajectory fragments 7 = [l;_k41, .. ., It] rather than a single
state-action pair. This design enables richer semantic evaluation, but it means that the inferred reward
generally does not satisfy the strict Markov property. As a result, standard assumptions used by
Q-learning style methods may break down, since the reward cannot be decomposed step by step
without introducing bias. To understand how Markovian structure may be approximated in practice,
we introduce the notion of temporal consistency.

Temporal Consistency. There exists k& > 1 such that for all (s, ar), #(s¢, at) = f(r(se, ar), Ste+k),
where s;..1 1 denotes a trajectory segment of length &, and f is a deterministic mapping. This assump-
tion states that the inferred reward 7 becomes Markovian, or quasi-Markovian, when conditioned
on a bounded temporal window. A single state-action pair may be insufficient to determine reward
meaningfully, but a short segment can disambiguate states that appear similar locally yet differ
semantically. Without this property, the inferred reward may collapse distinct outcomes, creating
systematic misalignment between 7 and the true reward r.

Quasi-Markov Rewards via Augmented MDPs. If the inferred reward depends on a finite trajectory
window, one can define an augmented MDP where the same reward is Markovian, allowing standard
RL guarantees to apply.

Past-window form. An inferred reward is k-quasi-Markov if there exists a function g : S¥ x AxU —
R such that 7y = g((St—k+1,---,5¢), az, u), where u € U is a fixed goal or condition (e.g., a
language embedding).

Future-window form. An inferred reward is k-quasi-Markov if there exists a function i : SF*1 x
A x U — R such that TAt = h((St, ey 3t+k), at, u)



Practical Implications. The past-window form computes rewards from a short history (e.g., a
clip ending at t). The future-window form uses a short look-ahead (e.g., verifying stability over
the next k frames), which can be made causal by delaying the reward by k steps. Quasi-Markov
structure provides a practical way to reconcile inference-based rewards with RL theory. In our
experiments, varying the temporal window size k directly modulates this quasi-Markov structure and
has a pronounced effect on value-based methods such as DQN, while trajectory-based policy gradient
methods remain comparatively stable.

4.4  ALGORITHMIC IMPLICATIONS

A central question in reinforcement learning with inferred rewards is whether existing algorithms can
still guarantee policy improvement when the reward function is imperfect. We focus on two widely
used families: trajectory-based policy gradient methods and step-wise value-based methods.

Policy Gradient Methods. Policy gradient algorithms optimize the expected return

T
E T |,
t=0

J(m) = Eror [R(T)] = Erre

where 7 = (s, ao, . - ., ST, ar) denotes a trajectory. The policy gradient theorem gives
T
VoJ(mg) = Errr, Z Vg log mg(aslse) R(T) |,
t=0

where R(T) may be an inferred return. If the inferred return R(T) preserves the ordering of true
returns R(7) (i.e., monotonicity holds), then the gradient direction remains positively correlated with

improvements in R(7). Thus, even if R(T) is noisy or non-Markovian, trajectory-level monotonicity
suffices for consistent improvement under policy gradient updates.

Q-Learning and Bellman Updates. Q-learning algorithms, by contrast, rely on the Bellman equation

Q" (s,a) =E|r(s,a) + ymax Q" (s',a)

S,CL},

which assumes that the reward r(s, a) is a Markovian function of the current state-action pair. If
rewards are inferred from trajectory fragments, i.e., 7y = finr(7¢,9), with 7t = (S¢—ga1,---,S¢t)
or (S¢,...,8t+k), then 7#; may depend on history or future context. In such cases, two identical
state-action pairs (s, a;) may yield different inferred rewards depending on surrounding context,
violating the Markov property. This breaks the Bellman recursion and leads to biased targets even
when trajectory-level monotonicity holds. Consequently, value propagation may mis-rank state-
action pairs and destabilize learning. Augmenting the state with a temporal window (i.e., increasing
k) can partially restore quasi-Markov structure and improve DQN performance, but our results
indicate that value-based methods remain more sensitive to violations of Markovian assumptions
than trajectory-based policy gradient methods.

Implications. This analysis highlights an asymmetry. Policy gradient methods require only trajectory-
level monotonicity, making them robust to non-Markovian or noisy inferred rewards. Q-learning
methods, however, require both monotonicity and strict (or quasi-) Markovianity of per-step rewards
to ensure stability. This explains why trajectory-based methods tend to perform better in practice
under inferred rewards, while Q-learning style algorithms are more fragile.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate InfeRL across classic control and MuJoCo environments, including variants of CartPole
with symbolic visual cues, as well as Ant and Walker2D tasks that require more complex motor
coordination. At each timestep, a pretrained VLM (e.g., CLIP) provides inferred rewards by aligning
short trajectory windows with natural language goals, replacing environment-supplied signals. We
compare three algorithmic families: trajectory-level policy gradient methods (REINFORCE and



PPO) and a step-wise value-based method (DQN), to probe the algorithmic asymmetries identified
in our theory. We also vary the temporal window size k used for reward inference to study how
quasi-Markov structure influences learning dynamics. Full details of environments, prompts, reward
inference, and evaluation protocols are provided in Appendix

5.2 MEASURING MONOTONICITY OF INFERRED REWARDS

To quantify the reliability of inferred rewards, we compute pairwise agreement, Kendall’s 7, and
Spearman’s p (Virtanen et al., [2020) between rankings induced by inferred returns R(T) and true
returns R(7). Ground-truth returns are estimated from trajectories generated by a random policy,
ensuring a diverse set of behaviors for evaluation. However, for locomotion tasks, random rollouts
alone do not adequately span both successful and failing behaviors, since many desirable outcomes
such as stable walking rarely occur under random actions. In contrast, using fully trained policies
would bias the dataset toward high-return trajectories and would severely underrepresent failure
cases. To obtain a balanced and representative set of trajectories, we supplement random rollouts
with trajectories sampled from partially trained PPO policies. For Walker2D and Ant, we use policies
at 500K timesteps, which corresponds to one quarter of the standard two million timesteps required
for convergence. This choice provides access to trajectories that include early failures, partially
successful attempts, and emerging locomotion skills. The resulting mixed dataset captures a wide
spectrum of behaviors and provides a more reliable basis for estimating monotonicity.

Table|I|reports monotonicity scores across four environments, each tested with three different natural
language prompts. These prompts were chosen to represent both aligned goals (e.g., “upright
walking”) and misaligned ones (e.g., “collapsed robot”), allowing us to assess whether monotonicity
can distinguish suitable reward specifications from poor ones.

Table 1: Monotonicity results across environments and prompts. Values report pairwise agreement,
Kendall’s 7, and Spearman’s p between rankings induced by true and inferred returns.

Environment Prompt Pairwise Agr. Kendall’s 7 Spearman’s p

CartPole keep the pole upright. 1.000 0.981 0.999
The pole is nearly vertical (upright), and the cart is near the center. 1.000 0.983 0.999
The pole has fallen over, lying flat instead of upright. 1.000 0.979 0.998

InvPend keep the pole upright. 1.000 0.939 0.990
The pole is nearly vertical (upright), and the cart is near the center. 1.000 0.930 0.987
keep the pole downward. 1.000 0.925 0.984

Policy — Random / Partial Random / Partial Random / Partial

Walker2d A robot walking upright steadily. 0.668 / 0.929 0.337/0.859 0.474/0.966
A two-legged robot walking steadily to the right in an upright 0.669 /0.943 0.339/0.886 0.473/0.979
posture.
A two-legged robot collapsed on the ground, lying sideways and 0.675/0.938 0.351/0.876 0.489/0.974
not walking.

Ant A four-legged robot walking and balanced. 0.306/0.794 -0.388/0.587 -0.556/0.773
An ant robot walking steadily forward, with coordinated motion. 0.336/0.769 -0.328/0.538 -0.469 /0.700
A four-legged robot collapsed on the ground, lying flat and not 0.271/0.797 -0.459/0.595 -0.657/0.766

walking.

Analysis. In the CartPole and InvertedPendulum domains, all prompts exhibit near perfect
monotonicity, with Kendall’s 7 greater than 0.92 and Spearman’s p greater than 0.98. This reflects
the simplicity of these tasks, where semantic descriptions align cleanly with environment dynamics.
Even prompts referring to the pole being fallen or downward produce consistent rankings, showing
that monotonicity is easy to satisfy in well structured environments.

In Walker2D, results based on random trajectories are weaker but still meaningful, with 7 around
0.33 to 0.35. Despite the complexity of bipedal locomotion, the inferred rewards distinguish be-
tween successful walking and collapsed robots, indicating that monotonicity analysis can highlight
misaligned prompts even when absolute correlations are modest. When evaluated on trajectories
from a partially trained PPO policy, monotonicity increases substantially. Here partial refers to full
trajectories generated by a policy that has learned some locomotion. These rollouts contain both
failures and emerging gait patterns, which provide clearer semantic differences aligned with the
prompts, leading to higher agreement with true returns.



In Ant, the most challenging domain, all prompts yield negative correlations under random rollouts.
Nevertheless, the relative ordering remains informative since collapsed behaviors are consistently
ranked worse than walking related ones. Under partial trajectories, monotonicity becomes positive
because the dataset contains both collapse and meaningful motion, allowing the inferred reward to
distinguish behaviors more reliably.

Overall, these results suggest that monotonicity analysis provides a useful lens for assessing whether
inferred rewards are suitable for learning in specific settings. It helps distinguish between prompts that
yield reliable signals and those likely to mislead the agent. Comparing random and partial datasets
shows consistent trends, with partial trajectories offering clearer structure and higher agreement,
supporting the robustness of monotonicity as a diagnostic. Additional analysis examining the effect
of language prompt phrasing is provided in Table|3| showing that prompt-level monotonicity strongly
predicts PPO performance.

5.3 PoOLICY LEARNING UNDER INFERRED REWARDS

Comparison of Algorithms We compare three algorithms under inference-based rewards:
REINFORCE as a pure trajectory-level policy gradient method, PPO as a variance-
reduced policy gradient method, and DQN as a step-wise value-based method.  The
results across three variants of the CartPole environment are summarized in Table [l
In the CartPole-Base setting,

both REINFORCE and PPO  Table 2: Episodes and timesteps required for REINFORCE, PPO,
achieve reliable learning, con- and DQN to solve tasks across CartPole variants. Trajectory-based
sistent with the observation that  methods converge reliably under inferred rewards, while DQN

this environment admits a well-  giryggles when Markov structure is weak.
defined ground-truth reward and

that the inferred signal exhibits Environment REINFORCE PPO DON
strong monotonicity with true
returns. The success of both

Ep. Steps Ep. Steps Ep. Steps

. CartPole-Base 254 45K 280 12K 2024 58K
tra" ectory b?.SCd methOdS reflects CartPole-FireWater 450 23K 300 14K 2800 42K
the theoretical prediction that CartPole-MultiCue 780 41K 360 25K 3100 60K

monotonicity alone is sufficient
for policy gradient improvement,
even when the inferred reward is not strictly Markovian. By contrast, DQN also succeeds in this
setting but requires significantly more interaction, suggesting that near-Markovian structure in the
CartPole-Base reward makes it an unusually favorable case for value-based learning. In the CartPole-
FireWater variant, both REINFORCE and PPO remain effective, with REINFORCE solving the task
in 450 episodes and PPO in about 300 episodes (14K steps). DQN requires far more interaction. A
similar pattern appears in CartPole-MultiCue, where REINFORCE converges in 780 episodes and
PPO in 360 episodes, while DQN again requires substantially more training. These results reinforce
the theoretical asymmetry: trajectory-based methods depend only on monotonicity of complete
trajectories, whereas DQN additionally requires per-step Markovianity, which is weakened by the
window-based inferred reward.

Together, these experiments provide empirical validation of the theoretical claims. Trajectory-based
policy gradient methods can reliably exploit monotonic but non-Markovian rewards, whereas step-
wise Bellman-based methods become unstable, requiring substantially more samples or failing
to converge. The consistency between the monotonicity analysis and observed learning behavior
supports the view that monotonicity serves as a useful diagnostic for algorithmic choice under
inference-based reinforcement learning. The similar performance patterns of REINFORCE and PPO
further highlight that the key requirement for success under inferred rewards is trajectory-level order
preservation rather than any specific value-learning structure.

Overall, our experiments indicate that monotonicity offers a useful diagnostic for evaluating re-
ward reliability, that trajectory-based methods such as REINFORCE and PPO align better with
inferred rewards than step-wise methods like DQN, and that instruction-driven behaviors showcase
both the promise of semantic rewards and the limitations arising from ambiguity and non-Markov
dependencies. Further details are provided in Appendix [C.3]



5.4 EFFECT OF FRAME STACKING ON MARKOVITY OF INFERRED REWARDS

To evaluate whether increasing

temporal context improves the o REINFORCE e PO o DON

Markovity of the inferred re-

ward, we vary the number of g 45K seK

stacked frames used as input S a0k a0k | e

to the VLM-based reward func- 2 ] 35K

tion. Frame stacking provides fg 0k 20k s4K

a short history at each timestep £ zw\—. oK

and therefore reduces ambigu- .

ity in the inferred reward, which T S T T T T S S S

Number of stacked frames

makes the per-step signal closer
to a Markov function of the cur-
rent observation window. Fig-
ure [I] summarizes the number

Figure 1: Effect of frame stacking on Markovity of inferred
rewards (CartPole-Base). More stacked frames improve DQN
. . performance by making the inferred reward more Markovian,
of timesteps required by REIN- while REINFORCE and PPO remain largely insensitive. This
FORCE, PPO, and DQN to solve illustrates the asymmetry between trajectory-based and Bellman-

the CartPole-Base task for stack .
sizes k € {1,2,4}. The based methods under non-Markovian rewards.

trajectory-based methods, REIN-

FORCE and PPO, show only mild sensitivity to the stack size, which is consistent with our theory that
policy gradient methods rely on trajectory-level monotonicity rather than strict per-step Markovity.
In contrast, DQN exhibits a clear benefit from increased temporal context. As k increases, DQN
requires fewer timesteps to solve the task, reflecting that a larger observation window restores partial
Markov structure and reduces the inconsistencies introduced by window-based reward inference.
Overall, these results support the asymmetry predicted by our theoretical analysis. Frame stacking has
limited impact on trajectory-based algorithms but substantially improves the stability of value-based
methods by making the inferred reward closer to a per-step Markov signal.

55 EFFECT Table 3: PPO performance for solving the CartPole-Base task
OF LANGUAGE PROMPT under different natural language prompts.
ID  Prompt (Kendall’s 7) Timesteps  Episodes

"l;?blgB] ;h(iw%that PP1(3 solves keep the pole upright. (+ = 0.980) 29K 317
the CartPole-Base task consis- 2 The pole is nearly vertical (upright), and the cart is 27K 294
tently across prompts that ex- near the center of the track. (7 = 0.983)
press the same goa]. Solve times 3 The pole is nearly vertical (upright), and the cart is 27K 298

near the center. (r = 0.981)

vary only slightly, which is re-
flected in their high monotonic-
ity scores (7 = 0.980, 0.983, 0.981), indicating that each prompt induces nearly identical trajectory
rankings. These results suggest that in simple environments such as CartPole, inferred rewards are
robust to small linguistic variations. In more complex settings, where visual dynamics are richer,
prompt phrasing may have a larger effect on monotonicity and learning behavior.

6 CONCLUSION

We studied InfeRL, a framework that replaces environment-provided rewards with semantic signals in-
ferred from vision—language models. Our analysis highlighted monotonicity and (quasi-)Markovianity
as key properties shaping when such rewards support effective learning. Experiments across control
domains showed that monotonicity correlates with learning outcomes, policy gradient methods such
as REINFORCE and PPO are more robust than value-based methods such as DQN, and natural
language prompts can guide both standard and novel behaviors. Additional experiments also indicate
that prompt phrasing can influence reward monotonicity, though simple tasks such as CartPole remain
largely robust. These results suggest that viewing reinforcement learning through the lens of reward
inference provides a principled path toward aligning agents with high-level goals while underscoring
the need for careful prompt design and robust inference mechanisms.
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Inference-Based RL (InfeRL)
Formalism:

Standard Reinforcement Learning (MDP)
Formalism:

M= (S, A,Prn)
» S: state space
 A: action space
* P(s'|s,a): transition dynamics
* (s, a): reward from environment

¢ ~: discount factor

M' = (S, A, P,G, fir,7)
* §: state space
* A: action space
* P(s'|s,a): transition dynamics
¢ G: goal space (e.g., text)
* fint(T, g): inferred reward

Objective: * v: discount factor
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Figure 2: Inference-Based RL (InfeRL) replaces externally defined rewards with internally inferred
signals based on semantic alignment between behavior and goals.

A STANDARD MDP vs INFERENCE-BASED RL (INFERL)

Figure [ summarizes the structural difference between the standard MDP formulation and the InfeRL
framework used in this work. In a conventional MDP, the reward is a property of the environment and
depends only on the current state and action. This design assumes that the task objective is known in
advance and can be encoded directly into a Markovian reward function.

In InfeRL, the reward is produced internally by the agent through an inference mechanism that evalu-
ates short trajectory segments against a goal specification. This shift has two important implications.
First, the reward signal is no longer guaranteed to be Markovian since it may depend on a short
history of observations. Second, the reward becomes a design component of the agent rather than a
fixed part of the environment, which allows goal specifications to be changed without modifying the
underlying dynamics.

These distinctions clarify why standard theoretical guarantees for value-based methods may not apply
directly under inferred rewards, and why policy gradient methods, which operate on full trajectories,
tend to be more robust. At the same time, the InfeRL formulation highlights the benefit of using rich
semantic models to express goals in a flexible and natural way, enabling learning in settings where
explicit reward engineering is difficult or infeasible.

B EXPERIMENT SETUP

To empirically validate our theoretical analysis, we design experiments that evaluate how inference-
based rewards enable agents to acquire meaningful behaviors from natural language prompts and
visual feedback, without relying on environment-supplied rewards. Our objectives are threefold: to
measure whether inferred rewards preserve monotonicity with ground-truth returns, to compare the
robustness of trajectory-based and step-wise algorithms under inferred rewards, and to test whether
semantic prompts support novel instructed behaviors that are difficult to specify with handcrafted
reward functions.

Environments We conduct experiments in three control domains of increasing complexity: CartPole,
MuJoCo Ant, and MuJoCo Walker2D. The CartPole domain serves as a controlled setting where we
introduce progressively richer variants (see Figure[3). In CartPole-Base, the agent balances a pole on
a moving cart. CartPole-FireWater augments the background with symbolic cues, a fire icon on the
left and a water droplet on the right, enabling instructions such as “move toward water” or “avoid
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fire.” CartPole-MultiCue extends this idea further, adding multiple cues such as umbrellas and clouds
to support more abstract and context-dependent prompts like “stay under the umbrella while avoiding
hazards.”

CartPole-Base CartPole-FireWater CartPole-MultiCue
@
W & W e

— a B

Figure 3: Variants of the CartPole environment used in our experiments. From left to right: (1)
CartPole-Base: the standard task where the agent balances a pole on a cart. (2) CartPole-FireWater:
background includes a fire icon on the left and a water droplet on the right, enabling directional
prompts. (3) CartPole-MultiCue: background includes fire, water droplets, umbrellas, and clouds,
supporting more complex instructions such as “stay under the umbrella” or “avoid fire.” These
variations preserve the original task dynamics while introducing symbolic visual cues that enable
natural language instruction grounding. They are designed to evaluate the agent’s ability to infer
rewards from semantics, generalize across goal specifications, and follow increasingly abstract or
context-dependent instructions.

The Ant environment offers a substantially more complex control challenge with high-dimensional
action and observation spaces. We consider two tasks: Ant-Balance, in which the agent must rotate
in place while maintaining stability, and Ant-Rotate, where the goal is to spin rapidly in place
without forward locomotion. The latter illustrates how simple natural language prompts can express
behaviors that are difficult to encode via handcrafted rewards. Finally, Walker2D provides another
high-dimensional setting where the agent is instructed to “walk while remaining upright.”

These domains preserve the underlying dynamics of their respective environments while enabling
more expressive, interpretable goals. This makes them ideal testbeds for examining how well
inference-based rewards capture task intent.

Goal Prompts Each environment is paired with natural language goal specifications that describe
the desired behavior (Tabled)). Prompts are designed to be semantically meaningful yet sufficiently
underspecified to highlight potential ambiguities. For example, CartPole-Base is defined by “the pole
remains upright and the cart stays near the center,” while Ant-Rotate uses “a four-legged ant robot
spins in place while staying balanced.” We also test robustness to prompt variations by rephrasing
instructions or altering emphasis.

Table 4: Natural language goal specifications used for reward inference across different environment
settings.

Environment Setting Task Type Goal Specification
CartPole Base Single-objective The pole is nearly vertical (upright), and the cart is near the
center of the track.
CartPole FireWater ~ Multi-objective A cart with an upright pole is positioned directly under a red
and yellow fire icon, far away from the blue water droplet.
CartPole MultiCue Multi-objective + Complex A cart with an upright pole is positioned directly under a red
and yellow fire icon, far away from the blue water droplet.
Multi-objective + Complex The pole is upright and stable, with both the cart and pole

positioned under
the right umbrella, far from the fire and out of the rain.

MuJoCo Ant Balance Single-objective A four-legged robot walking and balanced.

MuJoCo Ant Rotate Novel behavior A four-legged ant robot spinning rapidly in place, staying
centered and balanced.

MuJoCo Walker2D ~ Walk Single-objective + Ambiguous A robot walking upright steadily.

Reward Inference Mechanism At each timestep, a pretrained vision—language model such as
CLIP (Radford et al., 2021) encodes a short trajectory window into an embedding. This embedding
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Ant Rotate Goal Specification:
A four-legged ant robot spinning rapidly in place, staying
centered and balanced.

Figure 4: Ant-Rotate behavior guided by a language-specified goal. A sequence of frames showing
the Ant agent rotating counterclockwise in place. Red circles mark a front leg for orientation; yellow
arrows indicate the direction of rotation. The behavior is learned solely from natural language-
based reward inference, without handcrafted shaping or environment-provided rewards (video in
supplementary).

is compared with that of the goal prompt, and their cosine similarity defines the inferred reward.
The environment’s native reward function is ignored during training. Importantly, the inference
mechanism is part of the agent’s design rather than the environment specification, reinforcing the
conceptual distinction at the heart of InfeRL: rewards are inferred internally rather than externally
supplied.

Reinforcement Learning Algorithms We compare two widely used algorithmic families that
embody the asymmetry highlighted in our theoretical analysis. Proximal Policy Optimization
(PPO) (Schulman et al, 2017) serves as a trajectory-based policy gradient method, which can
tolerate non-Markov rewards as long as monotonicity is preserved at the trajectory level. Deep
Q-Networks (DQN) represent step-wise value-based methods, which require both
monotonicity and Markovian structure in per-step rewards. Implementations are based on Stable-
Baselines3 (Raffin et all,[2021)) and CleanRL (Huang et al.} [2022), with no algorithmic modifications.
The cosine similarity produced by the vision—language model is passed directly as the per-step reward,
demonstrating that InfeRL integrates seamlessly with standard RL pipelines.

Evaluation Metrics We evaluate agents along two complementary axes. First, we measure mono-
tonicity by comparing the ordering of trajectories under inferred and ground-truth rewards, reporting
pairwise agreement and rank correlation (Kendall’s 7, Spearman’s p). Second, we assess learning
performance both quantitatively, via episode returns under PPO and DQN, and qualitatively, through
manual inspection of trained policies across multiple rollouts to determine whether behaviors align
with the intended natural language goals. Each experiment is repeated across five random seeds, with
ten rollouts per trained policy. This dual evaluation allows us to probe both alignment fidelity and
algorithmic robustness.

C ADDITIONAL RESULTS

C.1 INSTRUCTION-DRIVEN BEHAVIORS

We first evaluate whether InfeRL can induce a novel behavior in the MuJoCo Ant environment. The
agent receives the goal description: “a four-legged ant robot spinning in place while staying balanced.”
This objective requires a significant departure from the default locomotion typically observed in Ant
tasks, instead demanding symmetric leg movements that achieve rotation without translation.

As shown in Figure ] the agent successfully learns to rotate in place while maintaining balance.
Frame sequences illustrate consistent angular displacement, with leg markers and arrows confirming
stable counterclockwise spinning. Importantly, this outcome is achieved without handcrafted reward
shaping or explicit motion specification, relying solely on the inferred reward signal derived from a
pretrained vision—language model.
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PPO Success: PPO Success: PPO Partial Success: DQN Success:

position near fire position near right position near left Steady upright
as per instruction umbrella (safest) umbrella (near fire) as per instruction
U Y = g =
] ] ] —

Figure 6: CartPole instruction following with PPO and DQN. Visualizations of final agent
behaviors under different prompt types and environments. Left to Right: (1) PPO-trained agent
in the FireWater setting learns to position itself near the fire icon, consistent with the provided
instruction. (2) In the MultiCue environment, the PPO agent successfully navigates to the rightmost
umbrella, avoiding fire and rain, as specified by the goal. (3) A partial success in the MultiCue
environment, where the agent stops near the left umbrella, satisfying some but not all constraints.
(4) DQN agent, operating with a discrete action space, is evaluated on the base CartPole setup and
learns to stay upright and centered in accordance with the instruction. These results illustrate InfeRL’s
ability to support multi-objective goals under both continuous (PPO) and discrete (DQN) control
regimes (video in supplementary).

This result demonstrates that inference-based rewards can support the acquisition of non-default,
instruction-driven behaviors that are difficult to express through standard environment rewards. It
highlights the flexibility of InfeRL in aligning agent behavior with semantically specified goals.

Cartpole-B:
artpole-Sase Goal Specification:

We further test generalization in the MuJoCo

Walker2D environment, where the agent is in- A e o ey o
structed with the prompt: “a robot walking up- - near the center of the
right steadily.” As illustrated in Figure [7] the

agent learns a stable gait that preserves balance

and posture but consistently moves backward.

CartPole PPO Training

5001 _e— InfeRL (VLM) Reward Agent
Ground-Truth Reward Agent

This outcome underscores both the promise and
the limitations of natural language reward infer-
ence. On one hand, the instruction successfully
drives upright walking without task-specific re-
ward engineering. On the other hand, the ab-
sence of explicit directional cues allows the
agent to adopt a behavior that is semantically 0% 0k 20k ok 0K i
consistent with the language model’s interpre- Total Timesteps

tation but misaligned with human expectations.

Such cases emphasize the importance of pre- Figure 5: Car!:Pole PPO training results. In-
cise goal specification and connect directly to feRL PPO achieves performance comparable to
our theoretical analysis: vague or underspecified @ ground-truth reward agent, demonstrating that
prompts risk violating monotonicity and produc- inferred rewards based on natural language goals

ing behaviors that, while interpretable, diverge ~can effectively guide policy learning. Performance
from intended outcomes. is measured by episode length, corresponding to

the agent’s ability to maintain balance before ter-
mination.

Ground Truth Episode Reward

C.2 GENERALIZATION
TO MULTI-OBJECTIVE
AND COMPOSITIONAL GOALS

Beyond reproducing ground-truth rewards in

standard control settings, we evaluate whether InfeRL can generalize to tasks requiring multi-objective
and compositional reasoning. To this end, we consider two modified versions of the CartPole environ-
ment: CartPole-FireWater and CartPole-MultiCue. Both variants introduce symbolic visual cues
that must be interpreted in conjunction with the pole-balancing objective, yielding natural language
prompts that combine multiple constraints (see Table H).
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In CartPole-FireWater, the agent is instructed to position the cart near the fire icon and away from
the water droplet, while also keeping the pole upright. In practice, PPO agents often succeed in
moving toward the fire region, suggesting that the vision—language model correctly associates the
fire symbol with the prompt. However, the need to maintain balance can conflict with positional
goals, occasionally leading to instability or divergence when multiple constraints must be satisfied
simultaneously.

In CartPole-MultiCue, the instruction specifies a richer objective involving fire, umbrellas, and rain.
Here, we observe more consistent alignment with the intended goals: PPO agents frequently navigate
toward the rightmost umbrella while avoiding fire and rain. Interestingly, partial successes also
emerge, with the agent stopping under the left umbrella. This indicates that semantic similarity
captures some but not all aspects of spatial relations among objects. One explanation is that umbrella
and rain cues in this variant are visually distinct and semantically well-grounded in pretrained
vision—language models, whereas the stylized water droplet in FireWater is less prototypical.

Figure [f]illustrates these qualitative outcomes. In both FireWater and MultiCue, PPO agents demon-
strate the ability to follow composite instructions, though with varying levels of precision depending
on the distinctiveness of visual cues.

Finally, to verify the framework’s applicability beyond continuous control, we train a DQN Mnih
et al.|(2015) agent on the standard CartPole setting. The DQN agent successfully learns to keep the
pole upright and the cart near the center, consistent with the prompt. This result indicates that InfeRL
can operate in both continuous and discrete action spaces, while still supporting multi-objective goals
when visual and linguistic cues are sufficiently clear.

C.3 COMPARISON WITH GROUND-TRUTH REWARDS

To further validate the effectiveness of InfeRL, we compare PPO trained on inferred rewards with PPO
trained on environment-provided ground-truth rewards. For the CartPole-Base environment, results
show that PPO with inferred rewards achieves nearly identical performance to training with ground-
truth rewards, confirming that semantic alignment from the vision-language model is sufficient
to replicate the standard reward. Similar findings hold for the InvertedPendulum-v4 (the MuJoCo
equivalent of CartPole), where episode length serves as the ground-truth reward signal. Learning
curves for CartPole are presented in Figure[5] showing the close correspondence between ground-truth
and inferred-reward training.

C.4 WALKER2D WITH INFERRED REWARDS

A more interesting pattern emerges
in Walker2D. Here, PPO with CLIP-
based inferred rewards demonstrates
faster early-stage learning compared
to training with ground-truth rewards. <
Since the environment’s ground-truth )
reward is unavailable in our setup,

we report episode length as a proxy Figure 7: MuJoCo Walker2D behavior under inferred
metric, which still provides a reason- reward. A sequence of frames showing the agent walking
able indication of task success. PPO  ypright steadily in the backward direction. The agent learns
with inferred rewards achieves an av- o maintain balance and upright posture but chooses to walk
erage episode length of 715 within jp reverse, highlighting a partial success and the impact of

500K timesteps, compared to 476 un-  ambiguous language instructions.
der ground-truth rewards.

Goal Specification: A robot walking upright steadily.

One possible explanation for this dif-

ference is the prior knowledge embedded in CLIP, which may accelerate alignment by providing
semantically meaningful reward shaping early in training. While this effect requires further investiga-
tion, it suggests that inference-based rewards can, in some cases, bootstrap learning more effectively
than raw task signals. The corresponding learning curves are illustrated in Figure[7} highlighting the
faster rise in episode length under inferred rewards.
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Additional Results. To further probe the flexibility of InfeRL, we examine its ability to induce novel
and compositional behaviors (see Appendix [C.T|and [C.2]for details). In the MuJoCo Ant domain,
natural language prompts such as “spin in place while staying balanced” lead to qualitatively new
locomotion strategies that differ from the default forward gait, while in Walker2D, vague instructions
like “walk upright steadily” produce plausible but unintended backward walking. These case studies
highlight both the promise of natural language rewards in guiding complex behaviors and the risks
posed by underspecified prompts.

We also evaluate multi-objective and compositional instructions in modified CartPole environments.
In FireWater, agents must balance the pole while positioning near fire and away from water, whereas
in MultiCue they must additionally consider umbrellas and rain. PPO agents show partial to strong
alignment with these goals, with success depending on the salience of visual cues, while DQN reliably
solves the simpler base CartPole task. Together, these findings demonstrate that InfeRL generalizes
beyond standard control to instruction-driven, multi-objective scenarios, but also underscore the
importance of prompt clarity and cue distinctiveness.

C.5 SUMMARY OF FINDINGS

Our experiments yield several insights into the effectiveness and limitations of inference-based
reinforcement learning.

First, we find that monotonicity provides a useful diagnostic for evaluating the reliability of inferred
rewards. In simple domains such as CartPole and InvertedPendulum, monotonicity scores approach
unity (Kendall’s 7 > 0.92, Spearman’s p > 0.98), reflecting strong agreement between inferred and
true returns. In more complex domains such as Ant and Walker2D, monotonicity remains informative:
well-chosen prompts yield higher agreement with ground-truth returns, while ambiguous or poorly
designed prompts break the property. This suggests that monotonicity analysis can guide the design
and selection of prompts, offering a principled alternative to ad-hoc specification.

Second, the algorithmic comparison between PPO and DQN validates our theoretical predictions. PPO
achieves stable learning whenever trajectory-level monotonicity is preserved, performing comparably
under inferred and true rewards in CartPole and InvertedPendulum. In contrast, DQN exhibits slower
convergence and reduced robustness in settings where the Markov property is violated, such as
CartPole-FireWater and CartPole-MultiCue. These results demonstrate that policy gradient methods
are better aligned with the properties of inferred rewards, while step-wise value-based methods
remain fragile.

Third, our case studies illustrate both the promise and limitations of instruction-driven behaviors. In
Ant, the agent successfully learns to rotate in place under a natural language prompt, demonstrating
that novel, non-default behaviors can emerge without hand-engineered rewards. In Walker2D,
however, ambiguous instructions result in backward walking, a behavior consistent with the inferred
reward but misaligned with implicit expectations. These outcomes highlight both the flexibility of
semantic rewards and the importance of addressing non-Markov dependencies and prompt ambiguity.

Taken together, these findings suggest that monotonicity provides a unifying principle for diagnosing
reward reliability, that trajectory-based methods are particularly well-suited to inference-based
settings, and that careful prompt design remains essential for realizing the full potential of natural
language reward specification.
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