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Abstract. Although vision-language models (VLMs) have achieved strong
results in general computer vision tasks, their effectiveness in medical
imaging remains limited—primarily due to their insufficient reasoning
capabilities. In this work, we introduce KODER, a novel knowledge-
driven reasoning framework aimed at improving diagnostic accuracy for
ultrasound-based burn assessment. KODER integrates pre-trained VLMs
with first-order logic (FOL) reasoning to generate interpretable diagnos-
tic hypotheses. By combining rich experimental descriptions and clinical
insights into a unified prompt, the framework produces multiple diag-
nostic hypotheses and refines them through iterative consistency checks
using an SMT solver. The validated hypotheses are then used to support
both surgical decision-making and detailed burn depth classification. We
evaluate our approach on a retrospective dataset collected from a U.S.
burn center, where it achieves significant performance gains—reaching up
to 93% accuracy in surgical classification and 87% in fine-grained burn
depth prediction. Additionally, incorporating techniques such as chain-of-
thought reasoning, self-consistency, and explicit explanation generation
further boosts both interpretability and diagnostic reliability. Our exper-
iments span multiple state-of-the-art VLMs, including GPT-4o, GPT-4
Turbo, and Gemini 1.5 and Gemini 2.0, confirming the generalizability
of KODER across architectures.
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1 Introduction

Vision-language models (VLMs) have achieved significant success by integrat-
ing visual processing with natural language understanding, particularly in tasks
where explicit reasoning is not a core requirement [1,17,10,9,13,12,7,22,8,5,21,14].
However, applying these models to complex medical scenarios—such as diagnos-
ing burn severity from ultrasound scans—presents unique challenges. This dif-
ficulty arises from the fact that interpreting multimodal ultrasound data often
involves a structured reasoning process rather than straightforward perception.

Fig. 1. Overview of KODER: Knowledge-Driven Reasoning Framework.

These challenges become even more pronounced when working with novel
imaging modalities and small, domain-specific datasets. VLMs are typically pre-
trained on massive, diverse datasets [13], but such data is rarely available in
specialized clinical settings due to privacy concerns, proprietary limitations, or
lack of standardization. This issue is particularly relevant in emerging areas like
ultrasound-based burn care, where imaging protocols are still evolving and not
widely adopted in practice [18]. As a result, training large, dedicated models for
such tasks is often infeasible. To overcome these limitations, we propose a new
framework that adapts existing, general-purpose VLMs to medical imaging tasks
by incorporating structured reasoning.

Another critical limitation of large language models (LLMs) is their ten-
dency to generate explanations that may be ambiguous, inconsistent, or lack
clinical clarity [20,19,3,4]. This stems from the probabilistic nature of LLM out-
puts and can be problematic in high-stakes applications like medical diagnosis,
where interpretability and reliability are essential [16,2]. For instance, ultra-
sound modalities such as Tissue Doppler Imaging (TDI) [6] and B-mode imag-
ing capture nuanced features—including color-coded motion patterns and tissue
structures—that require both image understanding and expert-level reasoning
to interpret correctly.

To address this, we introduce KODER (Knowledge-Driven Reasoning), a
framework that combines the generative capabilities of LLMs with formal log-
ical validation. As shown in Figure 1, our method begins with a rich textual
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description of the imaging task, including details about modalities, scanning
conditions, and patient context. The LLM uses this information to generate a
diagnostic hypothesis along with a set of first-order logic (FOL) premises that
encode the clinical rationale. These premises are then evaluated using an SMT
(Satisfiability Modulo Theories) solver such as Z3 [11] to detect contradictions
or ambiguities. This verification process enables iterative refinement of the hy-
pothesis and logic until a consistent and clinically sound conclusion is reached.

We evaluate our framework on two downstream tasks: (i) binary classifi-
cation to determine whether surgical intervention is needed, and (ii) a fine-
grained, three-class burn depth prediction. Our experimental results on ultra-
sound datasets for burn diagnosis show that incorporating logically validated
hypotheses leads to improved diagnostic accuracy. Across multiple state-of-the-
art VLMs—including GPT-4o, GPT-4 Turbo, and Gemini 1.5 and Gemini 2.0
— KODER consistently improves performance. For instance, GPT-4o combined
with KODER achieves up to 93% accuracy in surgical decision-making and
87% in burn depth classification. Moreover, incorporating chain-of-thought rea-
soning and self-consistency further boosts both accuracy and interpretability,
highlighting the effectiveness of structured, knowledge-guided diagnostic model-
ing.

In summary, our main contributions are:

– We introduce a novel framework that integrates vision-language models with
formal logic to produce interpretable diagnostic hypotheses.

– We address the limitations of standard LLM/VLM outputs by validating
generated content through logical consistency checks.

– We demonstrate the clinical utility of our approach through improved per-
formance on real-world diagnostic tasks in burn care.

2 Methodology

2.1 KODER Framework

This section presents the Knowledge-Driven Reasoning (KODER) framework, a
method developed to formulate diagnostic hypotheses for predicting burn depth
based on ultrasound imaging.

Problem Formulation and Input Description. The primary goal is to
generate a global, dataset-level hypothesis for predicting burn depth based on
ultrasound imaging. Instead of relying on raw image data, the method uses
a detailed textual description that outlines both the imaging modalities and
clinical rationale.

Let T denote the space of textual descriptions. We define Dexp ∈ T as the
experimental setup description, and Dclin ∈ T as the clinical context information.
For example, Dexp could be: “We employ Tissue Doppler Imaging (TDI) and
B-mode ultrasound to predict burn depth. TDI provides color-coded velocity
information, while B-mode offers structural imaging.” Similarly, Dclin could be:



4 Rahman et al.

“Clinical protocols indicate that dominant blue patterns in TDI images and
discontinuous layers in B-mode images are correlated with full-thickness burns.”

We define the PromptBuilder function to merge these two sources of infor-
mation into a single prompt p:

p = PromptBuilder(Dexp,Dclin) = Dexp ⊕Dclin,

where ⊕ represents concatenation, and PromptBuilder ∈ T . This prompt
provides the LLM with sufficient contextual knowledge for hypothesis generation.

Hypothesis and Premise Generation. Using the prompt p, the language
model Mθ (parameterized by θ) generates both a natural language hypothesis
h and a corresponding set of first-order logic (FOL) premises Φ. To promote
diversity in the outputs, sampling parameters such as temperature τ and top-p
nucleus sampling ptop are varied. Formally:

(h, Φ) = Mθ(p | τ, ptop),

where h is a natural-language hypothesis, e.g., “If a dominant blue pattern is
observed in TDI images and B-mode images show discontinuous layers, then the
burn is likely full-thickness.” Additionally, Φ = {ϕ1, ϕ2, . . . , ϕK} is a set of FOL
statements encoding clinical rules. For instance:

ϕ1 : (DominantBlue ∧ DiscontLayers) → FullThicknessBurn.

Consistency Verification via SMT Solver. To verify the internal con-
sistency of the logical premises Φ, a satisfiability modulo theories (SMT) solver
(e.g., Z3 [11]) is used. The logical consistency is evaluated as:

SMT(Φ) =

{
1, if Φ is logically consistent,
0, otherwise.

If SMT(Φ) = 0, feedback is provided to the LLM to refine the hypothesis h or
the logical set Φ. This process is repeated iteratively:

Φ(ℓ+1) = Γ
(
Mθ

(
RefinePrompt(p, Φ(ℓ))

))
,

until the solver returns SAT (i.e., SMT(Φ) = 1) or a maximum number of iter-
ations m is reached. If no consistent set is found after m iterations, conflicting
statements are discarded.

Final Hypothesis Generation. Once a consistent logical set Φ is estab-
lished, the final diagnostic hypothesis is produced by integrating these validated
FOL premises into a coherent natural language summary. An example output
might be: “Based on the dominant blue color patterns in TDI and the discontinu-
ous layers observed in B-mode imaging, the burn is indicative of a full-thickness
injury, suggesting that surgical intervention may be required.”
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2.2 Downstream Tasks

In the downstream tasks, we combine the diagnostic hypothesis with ultrasound
image classification. Each ultrasound sample xi is composed of a tuple:

xi =
(
xTDI
i , xB

i

)
,

where xTDI
i and xB

i represent the raw TDI and B-mode images, respectively.
These images are first converted to RGB format and then concatenated hori-
zontally, placing the B-mode image on the left and the TDI image on the right.
This results in a composite image defined as:

zi ∈ RH×W×3.

The composite RGB image zi is then used as input to the vision-language model
(VLM) classifier.

For the binary classification task, which distinguishes between surgery and
non-surgery cases (with labels yi ∈ {0, 1}), we define a classifier function:

g : RH×W×3 → [0, 1],

such that the probability of a positive label is given by:

P (yi = 1 | zi) = g(zi).

To incorporate the hypothesis h, we use a logical support function S(h, Φ, y),
which measures how well the hypothesis supports a given decision y. The final
prediction is computed as:

ŷi = arg max
y∈{0,1}

{
P (y | zi) + αS(h, Φ, y)

}
,

where α is a hyperparameter that balances the influence of the support function.
In the case of the fine-grained burn depth classification task, where

classes c ∈ {1, 2, . . . , N} correspond to different burn depths (with N = 3 in
our setting), we denote the class probabilities from a multi-class classifier as
P (c | zi). The final prediction is then given by:

ĉi = arg max
c∈{1,2,...,N}

{
P (c | zi) + β S(h, Φ, c)

}
,

where β is the associated balancing hyperparameter.
In our implementation of Logical Support Function, the VLM classifier is

prompted with a query that integrates h along with the candidate class. For
instance, to compute S(h, Φ, y) for a candidate class y, the system may issue a
prompt such as: “Given the diagnostic hypothesis: [h] and the logical premises:
[Φ], to what extent does this information support the diagnosis of [y]? ” The
VLM’s textual response is then mapped to a numerical score.
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2.3 Classification with Hypothesis (Proposed Method)

In the proposed classification framework, the final diagnostic hypothesis h (and
its corresponding reasoning, when applicable) is incorporated as a system prompt
to guide the Vision-Language Model (VLM) classifier. We explore three different
variants of this method:

1. Hypothesis+VLM In this variant, the VLM receives a prompt such as
“What is the degree of burn depth?” or “Is this a surgery case or not?” The
classification function is defined as:

fVLM : RH×W×3 × T → Y,

where Y is the label space, which could be {0, 1} for binary classification or
{1, 2, . . . , N} for multi-class classification. The final prediction is given by:

ŷi = fVLM(zi, h) = argmax
y∈Y

P
(
y | zi, h

)
.

2. Hypothesis+VLM with Chain-of-Thought (CoT) This variant en-
hances the model’s reasoning capabilities by introducing a chain-of-thought (CoT)
mechanism. A recursive reasoning process is used, defined as:

r(t) = Mθ

(
zi, h, r

(1), r(2), . . . , r(t−1)
)
, for t = 1, . . . , T,

with r(0) initialized as an empty context. The complete chain-of-thought is rep-
resented as:

r = {r(1), r(2), . . . , r(T )}.
Each output r(t) is recursively included in the system prompt for subsequent
iterations, progressively refining the prediction. The CoT-enhanced classification
function is expressed as:

fCoT
VLM : RH×W×3 × T ×R → Y,

where R is the space of chain-of-thought outputs. The final prediction is com-
puted as:

ŷi = fCoT
VLM(zi, h, r) = argmax

y∈Y
P
(
y | zi, h, r

)
.

3. Hypothesis+VLM with Chain-of-Thought and Self-Consistency
In the third variant, multiple candidate outputs are generated by varying sam-
pling parameters such as temperature τ and top-p within the CoT framework.
Let:

{ŷ(1)i , . . . , ŷ
(K)
i }

denote the set of candidate predictions. The final output is obtained by aggregat-
ing these predictions, for example, using majority voting or weighted averaging:

ŷi = Aggregate
(
{ŷ(k)i }Kk=1

)
.

Across all these variants, the hypothesis h, and when applicable the chain-
of-thought r, are integrated into the system prompt. This guides the VLM clas-
sifier toward producing more informed and interpretable predictions, further
supported by the logical scoring function S(h, Φ, ·).
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3 Experiments

3.1 Dataset and Experiments Settings

Our study is based on a retrospective ultrasound dataset collected over one year
at a U.S. burn center. The dataset consists of B-mode and Tissue Doppler Imag-
ing (TDI) ultrasound scans [6] from 29 human subjects, each presenting with
varying burn depths, including superficial, superficial partial-thickness (second-
degree), deep partial-thickness (second-degree), and full-thickness (third-degree)
burns. Ground truth labels for burn severity were obtained either through his-
tological biopsy or, when unavailable, through expert clinical assessment and
consensus from burn specialists. B-mode ultrasound was used to capture and
quantify structural tissue features, while TDI provided dynamic assessments of
tissue integrity. A visual example of the dataset is shown in Figure 2. To ensure
high imaging quality, we selected frames marked with green-labeled TDI quality
indicators, which signal proper probe pressure. This initial filtering yielded 950
ultrasound frames across all patients.

Fig. 2. An example from the burn dataset,
showing B-mode and TDI ultrasound im-
ages captured from the wound site.

To reduce redundancy from tem-
porally adjacent frames, we applied
uniform interval sampling within each
video clip, minimizing the inclusion of
visually repetitive frames. After this
filtering, we curated a final dataset
of 324 distinct ultrasound frames. Of
these, 130 frames from 15 patients
were reserved for evaluation, while the
remaining data were used for training
purposes, including chain-of-thought
and n-shot prompting strategies.

Implementation Details To
generate diagnostic hypotheses within
the KODER framework, we utilized OpenAI’s o3-mini-high model, which
is optimized for reasoning tasks. For the vision-language modeling com-
ponent, we evaluated several state-of-the-art models, including OpenAI’s
gpt-4o-2024-11-20, gpt-4o-mini-2024-07-18, and gpt-4-turbo-2024-04-09 [1],
as well as Google’s gemini-2.0-flash and gemini-1.5-flash [15].

To validate the first-order logic (FOL) premises, we employed the Z3 SMT
solver [11] to ensure logical consistency. For Chain-of-Thought (CoT) reason-
ing [20], n-shot prompting was used, where each prompt included an ultrasound
image, expert-provided explanation, and corresponding label to guide step-by-
step reasoning. In the self-consistency experiments [19], we varied the VLM’s
temperature, top-p sampling values, and the order and number of CoT exam-
ples to analyze their impact on prediction stability. Final decisions were ob-
tained using majority voting across outputs from multiple reasoning paths. For
fine-grained burn depth classification, we implemented a two-step VLM querying
process. In the first step, the model predicted whether a case was a third-degree
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burn. In the second step, remaining cases were classified as either second-degree
deep or second-degree superficial. This hierarchical approach yielded better per-
formance than a single-step three-way classification, as it reduced cognitive load
by narrowing the decision space at each stage.

3.2 Results

Table 1 presents a comparative analysis of various VLMs with and without
the KODER framework across two tasks: Surgical Decision-Making and Fine-
Grained Burn Depth classification. Overall, KODER—particularly when com-
bined with self-consistency—significantly enhances the diagnostic performance
of all evaluated models.

The best results are achieved by GPT-4o + KODER, which obtains an
accuracy of 93% on Surgical Decision-Making and 87% on Burn Depth classi-
fication. In contrast, the baseline GPT-4o model without KODER shows poor
performance, with only 33% and 27% accuracy, respectively, highlighting the
critical role of reasoning and logical refinement in achieving high diagnostic re-
liability.

Other models also benefit notably from the integration of KODER. For ex-
ample, Gemini 2.0 + KODER reaches 87% accuracy for Surgical Decision-
Making, though its performance on Burn Depth classification remains moderate
at 60%. Similarly, Gemini 1.5 + KODER demonstrates meaningful gains,
achieving 80% accuracy on Surgical Decision-Making and 67% on Burn Depth,
significantly outperforming its base model which only scored 60% and 47% on
the two tasks, respectively.

Table 1. Performance Comparison of KODER (with self-consistency) on Surgical De-
cision and Fine-Grained Burn Depth.

VLM Surgical Decision-Making Fine-Grained Burn Depth
Accuracy F-1 Prec Recall Accuracy F-1 Prec Recall

GPT4o+KODER 93% 0.93 0.94 0.93 87% 0.87 0.87 0.87
GPT4o 33% 0.17 0.11 0.33 27% 0.27 0.34 0.27
GPT4o-mini+KODER 80% 0.77 0.85 0.80 53% 0.42 0.35 0.53
GPT4o-mini 67% 0.67 0.69 0.67 73% 0.71 0.73 0.73
GPT4-Turbo+KODER 93% 0.93 0.94 0.93 53% 0.52 0.56 0.53
GPT4-Turbo 87% 0.87 0.87 0.87 60% 0.59 0.62 0.6
Gemini2.0+KODER 87% 0.86 0.89 0.86 60% 0.5 0.64 0.6
Gemini2.0 47% 0.41 0.79 0.47 47% 0.40 0.66 0.47
Gemini1.5+KODER 80% 0.79 0.85 0.8 67% 0.62 0.79 0.67
Gemini1.5 60% 0.5 0.42 0.6 47% 0.43 0.46 0.47

Across all configurations, the addition of KODER leads to consistent im-
provements in both precision and recall, indicating more reliable and balanced
classification. Notably, even smaller or earlier-generation models such as gpt-4o-mini
and gemini-1.5 show substantial boosts in performance when paired with the
KODER reasoning framework.
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These results confirm that the integration of structured hypothesis gen-
eration, logical consistency checking, and chain-of-thought prompting within
KODER not only enhances interpretability but also improves clinical decision-
making accuracy across VLM architectures.

Overall, these results highlight the effectiveness of KODER’s domain-aware
representations and its ability to generate knowledge-driven hypotheses that
capture the subtle nuances present in clinical ultrasound data. This leads to
notable improvements in predictive performance across all evaluated models.
Among them, GPT-4o with KODER consistently outperforms other configu-
rations, including Gemini 2.0 and smaller-scale models. In contrast, models such
as GPT-4o Mini and GPT-4 Turbo demonstrate limited capability, particularly
in the fine-grained burn classification task, where distinguishing subtle variations
in burn severity is essential.

Even in a zero-shot setting, the KODER framework improves overall classifi-
cation accuracy to 80%, demonstrating its robustness without requiring extensive
in-context examples. When combined with Chain-of-Thought (CoT) prompt-
ing, KODER+CoT further increases accuracy to 87%, emphasizing the value
of structured intermediate reasoning in clinical decision-making. Incorporating
self-consistency into this pipeline boosts performance to 93%, illustrating that
multiple reasoning passes can refine predictions and yield more dependable out-
comes.

A breakdown of per-class accuracy reveals that the model achieves perfect
classification for second-degree superficial burns. For second-degree deep burns,
the model attains 88% accuracy, with 12% misclassified as third-degree. Third-
degree burns are classified with 80% accuracy, with 20% misclassified as second-
degree deep. These results indicate that the model excels at detecting superficial
burns but encounters more difficulty distinguishing deeper injuries, likely due to
overlapping imaging characteristics among these clinically similar categories.

Fig. 3. Evaluation of KODER (4-shots CoT) with various image proportion.

Effect of Image Proportion on Performance To assess the robustness
of KODER under varying data availability, we conducted experiments using
increasing proportions of the image dataset (from right to left), ranging from 10%
to 100% in 10% increments. Thus, for image proportions less than or equal to
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50%, the input did not include B-mode information. The goal of this experiment
was to evaluate how the amount of image input influences the performance of
different VLMs when integrated with KODER.

Figure 3 shows the accuracy trends for the Surgery vs. Non-Surgery task
(left) and Fine-Grained Burn Depth classification (right). Across both tasks,
we observe that model (4-shots CoT) performance generally improves as more
image data is included, although the rate and consistency of improvement vary
across models.

In the Surgery vs. Non-Surgery task, gemini-1.5-flash demonstrates
strong and stable performance, reaching its peak (approximately 80%) by the
6× image proportion and maintaining it thereafter. gpt4o-mini also performs
consistently well across all data sizes. In contrast, gpt4o shows significant perfor-
mance variability at lower image proportions but steadily improves with more
data, eventually matching the top-performing models at the full dataset size.
gemini-2.0-flash shows moderate improvements but fluctuates at lower pro-
portions.

For the Fine-Grained Burn Depth task, the trends are more varied.
gemini-1.5-flash again leads, achieving around 67% accuracy at the highest
image proportion. gpt4o shows notable improvements as more images are used,
especially after the 6× mark, suggesting that this model benefits from larger
image contexts. gpt4o-mini and gemini-2.0-flash perform relatively well at
low proportions but do not improve significantly with additional data, indicating
a potential ceiling in their fine-grained classification ability under this setting.

These results suggest that while all models benefit from more image input,
larger and more advanced models like gemini-1.5-flash and gpt4o scale bet-
ter with increased visual context, particularly for tasks requiring fine-grained
reasoning.

3.3 Ablation Study

Impact of Number CoT Shots To better understand the contribution of in-
context learning, we conducted an ablation study evaluating the performance
of the KODER framework across different numbers of shots (0 to 4). Table 2
reports the classification accuracy for both Surgical Decision-Making and Fine-
Grained Burn Depth tasks. Overall, we observe that increasing the number of
in-context examples generally improves model performance. This trend is more
pronounced in the binary Surgical Decision task, where several models (e.g.,
GPT-4o, Gemini2.0, and GPT-4 Turbo) reach their peak accuracy (87%) by the
fourth shot. GPT-4o maintains a consistently high performance across all set-
tings, highlighting its strong reasoning capabilities even in zero-shot conditions.
Notably, GPT-4o-mini also benefits from one-shot prompting, achieving an 80%
accuracy that surpasses its zero-shot performance.

For the more challenging Burn Depth classification task, improvements are
more gradual but still significant. GPT-4o reaches 87% accuracy at shot-4,
demonstrating the advantage of progressive reasoning refinement. Gemini2.0
shows a similar pattern, peaking at 73% from a lower zero-shot baseline of 60%.
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Table 2. Evaluation with number of shots. Performance (%) of KODER framework
on Surgical Decision-Making and Fine-Grained Burn Depth

KODER+ Shot-0 Shot-1 Shot-2 Shot-3 Shot-4
Surgical Decision
GPT4o 80 80 80 80 87
Gemini2.0 67 67 87 80 80
GPT4o-mini 73 80 73 73 73
GPT4-Turbo 73 67 67 80 87
Burn Depth
GPT4o 67 67 80 80 87
Gemini2.0 60 73 73 73 73
GPT4o-mini 60 47 60 60 60
GPT4-Turbo 40 33 33 47 53

GPT-4 Turbo starts lower (40% in shot-0) but improves steadily with more ex-
amples, achieving 53% by shot-4. This suggests that while some models may
struggle in zero-shot settings, they can benefit substantially from structured
examples, especially in tasks requiring fine-grained differentiation.

Interestingly, performance gains plateau or slightly fluctuate for some models
after two to three shots, implying diminishing returns beyond a certain point.
This observation highlights the importance of balancing context complexity and
example quantity in prompt design for clinical reasoning tasks.

Impact of Explanation Generation Further, we evaluate GPT-4o’s per-
formance within the KODER framework under two hypothesis generation set-
tings. In the Label Only setting, the model outputs only the predicted class label.
This configuration achieves an accuracy of 87%, an F1-score of 0.86, a precision
of 0.89, and a recall of 0.87. In contrast, the Explain+Label setting requires
the model to generate an explanation followed by the class label. This more
structured prompting yields improved results, reaching an accuracy of 93%, an
F1-score of 0.93, a precision of 0.94, and a recall of 0.93. These findings sug-
gest that explicit explanation generation supports more accurate predictions by
prompting the model to engage in deeper reasoning before outputting a label.

Qualitative Analysis Figure 4 illustrates this effect with a representa-
tive example. In the sample case, the input imaging (left) corresponds to a

Fig. 4. In the sample results, the image input (left) reveals that GPT-4o (right) incor-
rectly identifies dermis layer damage as a third-degree burn rather than a second-degree
deep burn. In comparison, the KODER framework (middle) demonstrates improved
reasoning over the dermis layer, resulting in an accurate classification.
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second-degree deep (non-surgical) burn. The GPT-4o+KODER model (mid-
dle) correctly classifies the burn, producing a coherent explanation that high-
lights dermal layer involvement and preserved structural integrity—features con-
sistent with a deep partial-thickness injury. In contrast, the base GPT-4o
model (right) overestimates the severity by interpreting the damage as consistent
with full-thickness tissue involvement, leading to an incorrect classification of a
third-degree (surgical) burn. This example reinforces the benefit of explanation-
augmented reasoning in improving model reliability and interpretability in clin-
ical tasks.

4 Conclusion

In this work, we introduced the KODER framework, a novel approach that com-
bines domain-specific clinical knowledge with advanced reasoning techniques to
improve ultrasound-based burn diagnosis. By incorporating structured reasoning
through chain-of-thought prompting and enforcing consistency across multiple
reasoning paths, KODER delivers substantial gains in diagnostic accuracy. For
instance, in surgical decision-making, GPT-4o paired with KODER achieved
up to 93% accuracy, while in fine-grained burn depth classification, it reached
87% accuracy. These results demonstrate that explicitly guiding the model to
reason through its predictions leads to more accurate and interpretable outputs.
KODER also showed strong performance across multiple VLMs, particularly un-
der low-data settings, and adapted well across both binary and multi-class tasks.
Overall, KODER represents a significant step toward robust, interpretable, and
knowledge-guided diagnostic modeling in medical imaging applications.
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